🔥 2K8 CHÚ Ý! MỞ ĐẶT CHỖ SUN 2026 - LUYỆN THI TN THPT - ĐGNL - ĐGTD

🍀 ƯU ĐÃI -70%! XUẤT PHÁT SỚM‼️

Chỉ còn 2 ngày
Xem chi tiết

Câu hỏi 6 trang 153 SGK Đại số và Giải tích 11

Bằng định nghĩa, hãy tính đạo hàm của các hàm số:...

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Bằng định nghĩa, hãy tính đạo hàm của các hàm số:

LG a

f(x)=x2 tại điểm x bất kì;

Phương pháp giải:

- Tính Δy theo Δx.

- Tính tỉ số ΔyΔx.

- Tính giới hạn limΔx0ΔyΔx và kết luận.

Lời giải chi tiết:

Giả sử Δx là số gia của đối số tại x_0 bất kỳ. Ta có:

\eqalign{ & \Delta y = f({x_0} + \Delta x) - f({x_0}) \cr  & = {({x_0} + \Delta x)^2} - {x_0}^2 = 2{x_0}\Delta x + {(\Delta x)^2} \cr  & \Rightarrow {{\Delta y} \over {\Delta x}} = {{2{x_0}\Delta x + {{(\Delta x)}^2}} \over {\Delta x}} = 2{x_0} + \Delta x \cr  & \Rightarrow y'({x_0}) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} (2{x_0} + \Delta x) = 2{x_0} \cr}

Quảng cáo

Lộ trình SUN 2026

LG b

g(x) = {1 \over x} tại điểm bất kì x ≠ 0.

Lời giải chi tiết:

Giả sử Δx là số gia của đối số tại x_0 bất kỳ. Ta có:

\eqalign{ & \Delta y = g({x_0} + \Delta x) - g({x_0}) \cr  & = {1 \over {{x_0} + \Delta x}} - {1 \over {{x_0}}} = {{ - \Delta x} \over {{x_0}({x_0} + \Delta x)}} \cr  & \Rightarrow {{\Delta y} \over {\Delta x}} = {{ - \Delta x} \over {{x_0}({x_0} + \Delta x)}}:\Delta x = {{ - 1} \over {{x_0}({x_0} + \Delta x)}} \cr  & y'({x_0}) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} ({{ - 1} \over {{x_0}({x_0} + \Delta x)}}) = {{ - 1} \over {{x_0}^2}} \cr}

 Loigiaihay.com

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

close