Câu hỏi:

Cho \(x,y\) là các số tự nhiên thỏa mãn điều kiện \(\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 2.\) Tính giá trị của biểu thức \(Q = x\sqrt {{y^2} + 1}  + y\sqrt {{x^2} + 1} .\)

  • A \(Q = - \frac{3}{4}\)
  • B \(Q = \frac{4}{3}\)
  • C \(Q = - \frac{4}{3}\)
  • D \(Q = \frac{3}{4}\)

Phương pháp giải:

Biến đổi biểu thức đã cho bằng phương pháp nhân liên hợp sau đó tính giá trị biểu thức \(Q\).

Lời giải chi tiết:

Theo đề bài ta có: \(\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 2\)

\(\begin{array}{l} \Rightarrow \left( {x + \sqrt {{x^2} + 1} } \right)\left( {\sqrt {{x^2} + 1}  - x} \right)\left( {y + \sqrt {{y^2} + 1} } \right)\left( {\sqrt {{y^2} + 1}  - y} \right) = 2\left( {\sqrt {{x^2} + 1}  - x} \right)\left( {\sqrt {{y^2} + 1}  - y} \right)\\ \Leftrightarrow \left( {{x^2} + 1 - {x^2}} \right)\left( {{y^2} + 1 - {y^2}} \right) = 2\left( {\sqrt {{x^2} + 1}  - x} \right)\left( {\sqrt {{y^2} + 1}  - y} \right)\\ \Leftrightarrow 1 = 2\left[ {\left( {\sqrt {{x^2} + 1} \sqrt {{y^2} + 1}  + xy} \right) - \left( {x\sqrt {{y^2} + 1}  + y\sqrt {{x^2} + 1} } \right)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

Lại có: \(\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 2\)

 \(\begin{array}{l} \Rightarrow \left( {\sqrt {{x^2} + 1} \sqrt {{y^2} + 1}  + xy} \right) + \left( {x\sqrt {{y^2} + 1}  + y\sqrt {{x^2} + 1} } \right) = 2\,\,\\ \Leftrightarrow 2\left( {\sqrt {{x^2} + 1} \sqrt {{y^2} + 1}  + xy} \right) + 2\left( {x\sqrt {{y^2} + 1}  + y\sqrt {{x^2} + 1} } \right) = 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array}\)

Từ \(\left( 1 \right),\left( 2 \right)\) ta được:  \( - 4\left( {x\sqrt {{y^2} + 1}  + y\sqrt {{x^2} + 1} } \right) =  - 3\)\( \Rightarrow x\sqrt {{y^2} + 1}  + y\sqrt {{x^2} + 1}  = \frac{3}{4}.\)

Vậy \(Q = \frac{3}{4}.\)

Chọn D.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay