Câu hỏi:

Rút gọn biểu thức \(P = \frac{{3x + \sqrt {9x}  - 3}}{{x + \sqrt x  - 2}} - \frac{{\sqrt x  + 1}}{{\sqrt x  + 2}} - \frac{{\sqrt x  - 2}}{{\sqrt x  - 1}}.\) Tìm \(x\) để \(P = 3.\)

  • A \(P = \frac{\sqrt{x} + 1}{\sqrt{x} - 1}\,\,;\,\,\,x = 4\)
  • B \(P = \frac{\sqrt{x} - 1}{\sqrt{x} + 1}\,\,;\,\,\,x = 4\)
  • C \(P = \frac{\sqrt{x} + 2}{\sqrt{x} - 1}\,\,;\,\,\,x = \frac{25}{4}\)
  • D \(P = \frac{\sqrt{x} + 2}{\sqrt{x} + 1}\,\,;\,\,\,x = \frac{1}{4}\)

Phương pháp giải:

Tìm điều kiện xác định của biểu thức. Quy đồng mẫu các biểu thức và rút gọn biểu thức.

Lời giải chi tiết:

Điều kiện xác định: \(x \ge 0,x \ne 1.\)

\(\begin{array}{l}P = \frac{{3x + \sqrt {9x}  - 3}}{{x + \sqrt x  - 2}} - \frac{{\sqrt x  + 1}}{{\sqrt x  + 2}} - \frac{{\sqrt x  - 2}}{{\sqrt x  - 1}}\\\,\,\,\,\, = \frac{{3x + 3\sqrt x  - 3 - \left( {\sqrt x  + 1} \right)\left( {\sqrt x  - 1} \right) - \left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 2} \right)}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}}\\\,\,\,\,\, = \frac{{3x + 3\sqrt x  - 3 - x + 1 - x + 4}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}}\\\,\,\,\,\, = \frac{{x + 3\sqrt x  + 2}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}} = \frac{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}}\\\,\,\,\,\, = \frac{{\sqrt x  + 1}}{{\sqrt x  - 1}}.\end{array}\)

\( \Rightarrow P = 3 \Leftrightarrow \frac{{\sqrt x  + 1}}{{\sqrt x  - 1}} = 3\) \( \Leftrightarrow \sqrt x  + 1 = 3\sqrt x  - 3\)\( \Leftrightarrow 2\sqrt x  = 4 \Leftrightarrow x = 4\,\,\,\left( {tm} \right).\)

Vậy \(x = 4\) thì \(P = 3.\)

Chọn A.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay