Câu hỏi 1 trang 13 SGK Hình học 11

Chứng minh rằng...

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Quảng cáo

Đề bài

Chứng minh rằng \(M = {Đ_I}\left( M \right){\rm{ }} \Leftrightarrow {\rm{ }}M = {Đ_I}\left( {M'} \right)C\)

Video hướng dẫn giải

Lời giải chi tiết

\(M = {Đ_I}\left( M \right)\) nghĩa là phép biến hình này biến điểm \(I\) thành chính nó

hoặc biến mỗi điểm \(M\) khác \(I\) thành \(M'\) sao cho \(I\) là trung điểm

của đoạn thẳng \(MM'\)

\(+)\,M \equiv {\rm{ }}I{\rm{ }} \Rightarrow {\rm{ }}M' = {\rm{ }}{Đ_I}\left( M \right) \equiv {\rm{ }}M \equiv {\rm{ }}I{\rm{ }} \Rightarrow {\rm{ }}M = {\rm{ }}{Đ_I}\left( {M'} \right)\)

\( +) \, M \ne {\rm{ }}I \Rightarrow {\rm{ }}M' = {\rm{ }}{Đ_I}\left( M \right)\) thì \(I\) là trung điểm của MM’

\( \Rightarrow {\rm{ }}M' \ne {\rm{ }}I\) và phép biến hình biến mỗi điểm \(M'\) thành \(M\) sao cho \(I\) là trung điểm của đoạn thẳng \(M'M\)

\( \Rightarrow {\rm{ }}M = {\rm{ }}{Đ_I}\;\left( {M'} \right)\)

 Loigiaihay.com

Quảng cáo
close