Bài 9 trang 107 SGK Đại số 10

Phát biểu định lí về dấu của tam thức bậc hai.

Quảng cáo

Đề bài

Phát biểu định lí về dấu của tam thức bậc hai.

Video hướng dẫn giải

Lời giải chi tiết

Cho tam thức bậc hai: \(f(x) = ax^2+bx+c (a ≠0)\)

+) Nếu \(Δ<0\) thì \(f(x)\) cùng dấu vơi hệ số \(a\) với mọi \(x\in \mathbb R. \) hay \(a.f(x)>0, ∀\,x\in \mathbb R\)

+) Nếu \(Δ=0\) thì \(f(x)\) cùng dấu với a khi \(x \ne  - \dfrac{b}{{2a}}\) hay \(a.f(x) >0, \, ∀x\in \mathbb R \backslash\left\{{{ - b} \over {2a}}\right\}\)

+) Nếu \(Δ>0\) thì

i) f(x) cùng dấu với hệ số a khi x < x1 hoặc x > x2

ii) f(x) trái dấu với hệ số a khi x1 < x < x2

(\(x_1;x_2\) là hai nghiệm của \(f(x)\) với \(x_1<x_2\))

hay

i) \(a.f(x)>0\) khi \(x \in \left( { - \infty ;{x_1}} \right) \cup \left( {{x_2}; + \infty } \right)\)

ii) \(a.f(x)<0\) khi \(x \in (x_1;x_2)\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close