Câu 8 trang 121 SGK Hình học 11 Nâng cao

Cho tứ diện ABCD. Cắt tứ diện đó theo các cạnh đó theo các cạnh AB, AC, AD và trải các mặt ABC, ACD, ADB lên mặt phẳng (BCD) (xem hình 133). Hình phẳng gồm các tam giác BCD, A1BC, A2CD, A3BD gọi là hình khai triển của tứ diện ABCD trên mặt phẳng (BCD).

Quảng cáo

Đề bài

Cho tứ diện ABCD. Cắt tứ diện đó theo các cạnh đó theo các cạnh AB, AC, AD và trải các mặt ABC, ACD, ADB lên mặt phẳng (BCD) (xem hình 133). Hình phẳng gồm các tam giác BCD, A1BC, A2CD, A3BD gọi là hình khai triển của tứ diện ABCD trên mặt phẳng (BCD).

Lời giải chi tiết

Ta có hình khai triển của tứ diện ABCD trên mp(BCD) là tam giác A1A2A3.

Ta chỉ cần chứng minh tam giác A1A2A3 có ba góc nhọn.

Thật vậy, xét tam giác AA1Acó AC = A1C = A2C nên AA1 ⊥ AA2. Lí luận tương tự như trên, ta có AA1, AA2, AA3 đôi một vuông góc, từ đó tứ diện AA1A2A3 có mặt A1A2A3 là tam giác có ba góc nhọn.

Loigiaihay.com


  • Câu 7 trang 121 SGK Hình học 11 Nâng cao

    Một tứ diện được gọi là gần đều nếu các cạnh đối bằng nhau từng đôi một. Với tứ diện ABCD, chứng tỏ các tính chất sau là tương đương :

  • Câu 6 trang 120 SGK Hình học 11 Nâng cao

    Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại đỉnh C, CA = a, CB = b ; mặt bên ABB’A’ là hình vuông. Gọi P là mặt phẳng đi qua C và vuông góc với AB’.

  • Câu 5 trang 120 SGK Hình học 11 Nâng cao

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Tính diện tích các tam giác HAB, HBC và HCA.

  • Câu 4 trang 120 SGK Hình học 11 Nâng cao

    Tam giác ABC vuông có cạnh huyền BC nằm trong mp(P), cạnh AB và AC lần lượt tạo với mp(P) các góc β và γ. Gọi α là góc tạo bởi mp(P) và mp(ABC). Chứng minh rằng

  • Câu 3 trang 120 SGK Hình học 11 Nâng cao

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥ (ABCD). Hai điểm M và N lần lượt thay đổi trên cạnh CB và CD, đặt CM =x, CN = y. Tìm hệ thức liên hệ giữa x và y để :

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close