Câu 5.27 trang 183 sách bài tập Đại số và Giải tích 11 Nâng caoGiải và biện luận phương trình Quảng cáo
Đề bài Giải và biện luận phương trình \(f'\left( x \right) = 0\) biết rằng \(f\left( x \right) = 2\sin x + 2\left( {1 - 2m} \right)\cos x - 2mx\) Lời giải chi tiết Với mọi \(x \in R\), ta có \(\eqalign{& f'\left( x \right) = 2\cos 2x - 2\left( {1 - 2m} \right)\sin x - 2m \cr& f'\left( x \right) = 0 \cr&\Leftrightarrow \left( {1 - 2{{\sin }^2}x} \right) - \left( {1 - 2m} \right)\sin x - m = 0 \cr& \Leftrightarrow 2{\sin ^2}x + \left( {1 - 2m} \right)\sin x + m-1=0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr} \) Ta có \(\Delta = {\left( {1 - 2m} \right)^2} - 8m + 8 \) \(= 4{m^2} - 12m + 9 = {\left( {2m - 3} \right)^2}\) Vậy \(\left( 1 \right) \Leftrightarrow \left[ \matrix{\sin x = {{\left( {2m - 1} \right) - \left( {2m - 3} \right)} \over 4} = {1 \over 2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \cr\sin x = {{\left( {2m - 1} \right) + \left( {2m - 3} \right)} \over 4} = m - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \hfill \cr} \right.\) Giải (2), ta được \(\sin x = {1 \over 2} = \sin {\pi \over 6} \Leftrightarrow \left[ \matrix{x = {\pi \over 6} + k2\pi \hfill \cr x = {{5\pi } \over 6} + k2\pi . \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\) \( \bullet \) Giải (3), với điều kiện \( - 1 \le m - 1 \le 1\,\,\,hay\,\,0 \le m \le 2,\) ta được \(\sin x = m - 1 = \sin \alpha \Leftrightarrow \left[ \matrix{x = \alpha + k2\pi \hfill \cr x = \pi - \alpha + k2\pi \hfill \cr} \right.\,\,\,\,\,\,\,(5)\) Kết luận a) Nếu \(m < 0\) hoặc \(m > 2\) thì phương trình \(f'\left( x \right) = 0\) có các nghiệm là (4) b) Nếu \(0 \le m \le 2\) thì phương trình \(f'\left( x \right) = 0\) có các nghiệm là (4) và (5). Loigiaihay.com
Quảng cáo
|