Câu 5.27 trang 183 sách bài tập Đại số và Giải tích 11 Nâng cao

Giải và biện luận phương trình

Quảng cáo

Đề bài

Giải và biện luận phương trình \(f'\left( x \right) = 0\) biết rằng

             \(f\left( x \right) = 2\sin x + 2\left( {1 - 2m} \right)\cos x - 2mx\)

Lời giải chi tiết

Với mọi \(x \in R\), ta có

\(\eqalign{& f'\left( x \right) = 2\cos 2x - 2\left( {1 - 2m} \right)\sin x - 2m  \cr& f'\left( x \right) = 0 \cr&\Leftrightarrow \left( {1 - 2{{\sin }^2}x} \right) - \left( {1 - 2m} \right)\sin x - m = 0  \cr& \Leftrightarrow 2{\sin ^2}x + \left( {1 - 2m} \right)\sin x + m-1=0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr} \)

Ta có \(\Delta  = {\left( {1 - 2m} \right)^2} - 8m + 8 \)

\(= 4{m^2} - 12m + 9 = {\left( {2m - 3} \right)^2}\)

Vậy

\(\left( 1 \right) \Leftrightarrow \left[ \matrix{\sin x = {{\left( {2m - 1} \right) - \left( {2m - 3} \right)} \over 4} = {1 \over 2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \cr\sin x = {{\left( {2m - 1} \right) + \left( {2m - 3} \right)} \over 4} = m - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \hfill \cr}  \right.\)

Giải (2), ta được

\(\sin x = {1 \over 2} = \sin {\pi  \over 6} \Leftrightarrow \left[ \matrix{x = {\pi  \over 6} + k2\pi  \hfill \cr x = {{5\pi } \over 6} + k2\pi . \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\)

\( \bullet \) Giải (3), với điều kiện \( - 1 \le m - 1 \le 1\,\,\,hay\,\,0 \le m \le 2,\) ta được

\(\sin x = m - 1 = \sin \alpha  \Leftrightarrow \left[ \matrix{x = \alpha  + k2\pi  \hfill \cr x = \pi  - \alpha  + k2\pi  \hfill \cr}  \right.\,\,\,\,\,\,\,(5)\)

Kết luận

a) Nếu \(m < 0\) hoặc \(m > 2\) thì phương trình \(f'\left( x \right) = 0\) có các nghiệm là (4)

b) Nếu \(0 \le m \le 2\) thì phương trình \(f'\left( x \right) = 0\) có các nghiệm là (4) và (5).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close