Câu 5.22 trang 182 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho hai hàm số. Chứng minh rằng

Quảng cáo

Đề bài

Cho hai hàm số

                        \(f\left( x \right) = {\sin ^4}x + {\cos ^4}x\)  và \(g\left( x \right) = {1 \over 4}\cos 4x\)

Chứng minh rằng

                        \(f'\left( x \right) = g'\left( x \right)\,\,\,\left( {\forall x \in R} \right)\)

 

Lời giải chi tiết

Cách 1. Với mọi \(x \in R\), ta có

\(\eqalign{ f'\left( x \right)& = 4{\sin ^3}x\cos x + 4{\cos ^3}x\left( { - \sin x} \right) \cr&= 4\sin x\cos x({\sin ^2}x - {\cos ^2}x)  \cr& = 2\sin 2x\left( { - \cos 2x} \right) =  - \sin 4x. \cr} \)

Mặt khác ta có

    \(g'\left( x \right) = {1 \over 4}\left( { - 4\sin 4x} \right) =  - \sin 4x.\)

Vậy với mọi \(x \in R\), ta có

                        \(f'\left( x \right) = g'\left( x \right).\)

Cách 2. Ta chứng minh rằng \(f\left( x \right)\)  và \(g\left( x \right)\) khác nhau một hằng số ; vì hai hàm số khác nhau một hằng số thì rõ ràng đạo hàm của chúng bằng nhau (nếu chúng có đạo hàm) . Thật vậy, ta có

\(\eqalign{{\sin ^4}x + {\cos ^4}x &= {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x  \cr& = 1 - {1 \over 2}{\sin ^2}2x\cr& = 1 - {1 \over 2}.{{1 - \cos 4x} \over 2} \cr&= {3 \over 4} + {1 \over 4}\cos 4x \cr} \)

Tức là  \(f\left( x \right) = {3 \over 4} = g\left( x\right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\forall x \in R} \right).\)

Vậy                             \(f'\left( x \right) = g'\left( x \right).\)

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close