Câu 5.19 trang 182 sách bài tập Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giới hạn sau

 

LG a

\(\mathop {\lim }\limits_{x \to 0} {{\tan 3x} \over {\tan 5x}}\)         

 

Lời giải chi tiết:

 \({3 \over 5};\)        

 

LG b

\(\mathop {\lim }\limits_{x \to 0} {{\cos 2x - 1} \over {{{\sin }^2}3x}}\)

 

Lời giải chi tiết:

\( - {2 \over 9};\)           

 

LG c

\(\mathop {\lim }\limits_{x \to 0} {{\tan x - \sin x} \over {{x^3}}}\)   

 

Lời giải chi tiết:

\({1 \over 2};\)

\( \bullet \) Cách 1

\(\eqalign{& \mathop {\lim }\limits_{x \to {\pi  \over 2}} \left( {{\pi  \over 2} - x} \right)\tan x = \mathop {\lim }\limits_{x \to {\pi  \over 2}} \left( {{\pi  \over 2} - x} \right)\cot \left( {{\pi  \over 2} - x} \right)  \cr&  = \mathop {\lim }\limits_{x \to {\pi  \over 2}} {{\left( {{\pi  \over 2} - x} \right)} \over {\sin \left( {{\pi  \over 2} - x} \right)}}.\cos \left( {{\pi  \over 2} - x} \right) = 1 \cr} \)

(Vì \(\mathop {\lim }\limits_{x \to {\pi  \over 2}} {{{\pi  \over 2} - x} \over {\sin \left( {{\pi  \over 2} - x} \right)}} = 1\)  và \(\mathop {\lim }\limits_{x \to {\pi  \over 2}} \cos \left( {{\pi  \over 2} - x} \right) = \cos 0 = 1\) )

\( \bullet \) Cách 2. Đặt \({\pi  \over 2} - x = t\)  thì khi \(x \to {\pi  \over 2}\) ta sẽ có \(t \to 0.\)

Vậy \(\mathop {\lim }\limits_{x \to {\pi  \over 2}} \left( {{\pi  \over 2} - x} \right)\tan x = \mathop {\lim }\limits_{t \to 0} t\tan \left( {{\pi  \over 2} - t} \right)\)

\(= \mathop {\lim }\limits_{t \to 0} t\cot t = \mathop {\lim }\limits_{t \to 0} {t \over {\sin t}}.\cot t = 1.\)

Loigiaihay.com

 

Quảng cáo
list
close
Gửi bài