Bài 5 trang 156 SGK Đại số 10Không sử dụng máy tính, hãy tính: Quảng cáo
Video hướng dẫn giải Không sử dụng máy tính, hãy tính: LG a \(\displaystyle \cos {{22\pi } \over 3}\) Phương pháp giải: Sử dụng các công thức: \(\displaystyle \begin{array}{l} Lời giải chi tiết: \(\displaystyle \cos {{22\pi } \over 3} = \cos (8\pi - {{2\pi } \over 3})\) \(\displaystyle = \cos ( - {{2\pi } \over 3}) = \cos ({{2\pi } \over 3}) \) \(\displaystyle = {{ - 1} \over 2}\) LG b \(\displaystyle \sin {{23\pi } \over 4}\) Lời giải chi tiết: \(\displaystyle \sin {{23\pi } \over 4} = \sin (6\pi - {\pi \over 4})\) \(\displaystyle = \sin ( - {\pi \over 4}) = - \sin ({\pi \over 4}) = - {{\sqrt 2 } \over 2}\) LG c \(\displaystyle \sin {{25\pi } \over 3} - \tan {{10\pi } \over 3}\) Phương pháp giải: Sử dụng các công thức: \(\displaystyle \begin{array}{l} Lời giải chi tiết: \(\displaystyle \eqalign{ & \sin {{25\pi } \over 3} - \tan {{10\pi } \over 3} \cr&= \sin (8\pi + {\pi \over 3}) - \tan (3\pi + {\pi \over 3}) \cr & = \sin{\pi \over 3} - \tan {\pi \over 3} = {{\sqrt 3 } \over 2} - \sqrt 3 \cr&= {{ - \sqrt 3 } \over 2} \cr} \) LG d \(\displaystyle {\cos ^2}{\pi \over 8} - {\sin ^2}{\pi \over 8}\) Phương pháp giải: Sử dụng công thức \(\cos 2\alpha = {\cos ^2}\alpha - {\sin ^2}\alpha \) Lời giải chi tiết: \(\displaystyle {\cos ^2}{\pi \over 8} - {\sin ^2}{\pi \over 8} \) \( \displaystyle = \cos \left( {2.\frac{\pi }{8}} \right)= \cos {\pi \over 4} = {{\sqrt 2 } \over 2}.\) Loigiaihay.com
Quảng cáo
|