Câu 4.80 trang 116 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.80 trang 116 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình sau :

 

LG a

\(\left( {{{ {x}}^2} + { {x}} + 1} \right)\left( {{{ {x}}^2} + { {x}} + 3} \right) \ge 15\)

 

Lời giải chi tiết:

Đặt \(t = {x^2} + x + 2,t > 0.\) Khi đó bất phương trình trở thành :

\(\left( {t - 1} \right)\left( {t + 1} \right) \ge 15 \Leftrightarrow {t^2} \ge 16.\)    (*)

Do \(t > 0\) nên nghiệm của bất phương trình (*) là \(t ≥ 4\). Suy ra

\(\eqalign{& {x^2} + x + 2 \ge 4 \cr & \Leftrightarrow {x^2} + x - 2 \ge 0 \cr} \)

\( \Leftrightarrow x \ge 1\) hoặc \(x \le  - 2\)

Vậy tập nghiệm của bất phương trình đã cho là:

\(S = \left( { - \infty ; - 2} \right] \cup \left[ {1; + \infty } \right).\)

 

LG b

\(\left( {{ {x}} + 4} \right)\left( {{ {x}} + 1} \right) - 3\sqrt {{{ {x}}^2} + 5{ {x}} + 2}  < 6\)

 

Lời giải chi tiết:

\(S = \left( { - 7; - \dfrac{{5 + \sqrt {17} }}{2}} \right] \cup \left[ {\dfrac{{\sqrt {17}  - 5}}{2};2} \right)\)

Hướng dẫn. đặt \(t = \sqrt {{x^2} - 8x + 12}  \ge 0.\)

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close