Câu 4.77 trang 149 sách bài tập Đại số và Giải tích 11 Nâng caoTìm các giới hạn sau: Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tìm các giới hạn sau: LG a \(\mathop {\lim }\limits_{x \to 2} {{\sqrt {3x - 2} - 2} \over {{x^2} + 7x - 18}}\) Lời giải chi tiết: \({3 \over {44}};\) LG b \(\mathop {\lim }\limits_{x \to - 1} {{\sqrt {{x^2} + x + 2} - \sqrt {1 - x} } \over {{x^4} + x}}\) Lời giải chi tiết: 0; LG c \(\mathop {\lim }\limits_{x \to 4} {{3 - \left| {x - 1} \right|} \over {\left| {x - 2} \right| - 2}}\) Lời giải chi tiết: Với \(x > 2,\) ta có \(\left| {x - 1} \right| = x - 1\) và \(\left| {x - 2} \right| = x - 2.\) Do đó \({{3 - \left| {x - 1} \right|} \over {\left| {x - 2} \right| - 2}} = {{3 - \left( {x - 1} \right)} \over {x - 2 - 2}} = {{4 - x} \over {x - 4}} = - 1\) với \(x > 2\) và \(x \ne 4.\) Do đó \(\mathop {\lim }\limits_{x \to 4} {{3 - \left| {x - 1} \right|} \over {\left| {x - 2} \right| - 2}} = \mathop {\lim }\limits_{x \to 4} \left( { - 1} \right) = - 1;\) LG d \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 8x} - \sqrt {{x^2} - x} } \right).\) Lời giải chi tiết: \( - {9 \over 2}.\) Loigiaihay.com
Quảng cáo
|