tuyensinh247

Câu 4.76 trang 115 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.76 trang 115 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau :

 

LG a

\(\sqrt {{ {x}} + 3 - 4\sqrt {{ {x}} - 1} }  + \sqrt {{ {x}} + 8 - 6\sqrt {{ {x}} - 1} }  = 1\)

 

Lời giải chi tiết:

\(5 \le x \le 10.\)

Hướng dẫn. Đưa phương trình về dạng :

\(\left| {\sqrt {{ {x}} - 1}  - 2} \right| + \left| {\sqrt {{ {x}} - 1}  - 3} \right| = 1.\)

 

LG b

\(\sqrt {{ {x}} + \sqrt {14{ {x}} - 49} }  + \sqrt {{ {x}} - \sqrt {14{ {x}} - 49} }  = \sqrt {14} \)

 

Lời giải chi tiết:

\(\dfrac{7}{2} \le x \le 7.\) Hướng dẫn. Phương trình được đưa về dạng :

\(\left| {\sqrt {14{ {x}} - 49}  + 7} \right| + \left| {\sqrt {14{ {x}} - 49}  - 7} \right| = 14.\)

 

LG c

 \(\left| {2\sqrt {2\left| x \right| - 1}  - 1} \right| = 3\)

 

Lời giải chi tiết:

\(\left| x \right| = \dfrac{5}{2}.\)

 

LG d

\(\left| {x + \sqrt {1 - {x^2}} } \right| =  - \sqrt 2 \left( {2{{ {x}}^2} - 1} \right)\)

 

Lời giải chi tiết:

\(x \in \left\{ { - \dfrac{{\sqrt 2 }}{2};\dfrac{1}{4}\left( {\sqrt 6  - \sqrt 2 } \right)} \right\}\).

Hướng dẫn. Nếu \(x\) nghiệm đúng phương trình thì \( - \dfrac{1}{{\sqrt 2 }} \le x \le \dfrac{1}{{\sqrt 2 }}\) nên \(\sqrt {1 - {x^2}}  \ge \left| x \right|,\) nghĩa là \(x + \sqrt {1 - {x^2}}  \ge 0.\)

Vậy ta có thể giả thiết \(x \le \dfrac{1}{{\sqrt 2 }}\) và phương trình trở thành :

\(x + \sqrt {1 - {x^2}}  = \sqrt 2 \left( {1 - 2{{ {x}}^2}} \right).\)

Mặt khác \(1 - 2{{ {x}}^2} = \left( {\sqrt {1 - {x^2}}  + { {x}}} \right)\left( {\sqrt {1 - {x^2}}  - x} \right),\) nên ta có thể đưa phương trình đã cho về :

\(\left( {{ {x}} + \sqrt {1 - {x^2}} } \right)\left( {\sqrt {1 - {x^2}}  - x - \dfrac{1}{{\sqrt 2 }}} \right) = 0.\)

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close