Câu 4.35 trang 182 sách bài tập Giải tích 12 Nâng cao

Cho tam giác đều OAB trong mặt phằng phức (O là gốc tọa độ). Chứng minh rằng nếu A, B theo thứ tự biểu diễn các số

Quảng cáo

Đề bài

Cho tam giác đều OAB trong mặt phằng phức (O là gốc tọa độ). Chứng minh rằng nếu A, B theo thứ tự biểu diễn các số \({z_1},{z_0}\)  thì \({z_0}^2 + {z_1}^2 = {z_0}{z_1}\)

Lời giải chi tiết

Tam giác OAB là tam giác đều khi và chỉ khi OA = OB và góc ( OA, OB ) bằng \({\pi  \over 3}\) hoặc \( - {\pi  \over 3}\) tức là khi và chỉ khi \({z_0} \ne 0\) và nếu đặt \({{{z_1}} \over {{z_0}}} = \alpha \) thì \(\left| \alpha  \right| = 1\) và một acgumen của \(\alpha \) là \({\pi  \over 3}\) hoặc \( - {\pi  \over 3}\).

Mặt khác, khi \({{{z_1}} \over {{z_0}}} = \alpha \) thì \(z_0^2 + z_1^2 = {z_0}{z_1} \Leftrightarrow z_0^2 + {\alpha ^2}z_0^2 = \alpha z_0^2 \Leftrightarrow 1 + {\alpha ^2} = \alpha \)

\( \Leftrightarrow {\alpha ^2} - \alpha  + 1 = 0 \Leftrightarrow \alpha  = {{1 \pm \sqrt 3 i} \over 2} \Leftrightarrow \left\lfloor \alpha  \right\rfloor  = 1\) và một acgumen của \(\alpha \) là \({\pi  \over 3}\) hoặc \( - {\pi  \over 3}\).

Vậy ta đã chứng minh : OAB là tam giác đều khi và chỉ khi \(z_0^2 + z_1^2 = {z_0}{z_1}\) ( \(z \ne 0\)).

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close