Câu 4 trang 78 SGK Hình học 11 Nâng caoCho hai hình bình hành ABCD VÀ ABEF nằm trong hai mặt phẳng khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC, BF sao cho MC = 2AM, NF = 2BN. Qua M, N, kẻ các đường thẳng song song với AB cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng: Quảng cáo
Đề bài Cho hai hình bình hành ABCD VÀ ABEF nằm trong hai mặt phẳng khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC, BF sao cho MC = 2AM, NF = 2BN. Qua M, N, kẻ các đường thẳng song song với AB cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng: a. MN // DE b. M1N1 // mp(DEF) c. mp(MNN1M1) // mp(DEF) Lời giải chi tiết a. Gọi O là tâm hình bình hành ABCD, ta có AO là trung tuyến và AMAO=2AMAC=23 ⇒ M là trọng tâm của tam giác ABD , tương tự N là trọng tâm tam giác ABE Gọi I là trung điểm của AB thì M, N lần lượt trên DI và EI Trong tam giác IDE ta có: IMID=INIE=13 nên MN // DE và MN=13DE b. Trong ∆FAB: NN1 // AB ⇒ AN1AF=BNBF=13 Trong ∆DAC: MM1 // CD ⇒ AM1AD=AMAC=13 Do đó AN1AF=AM1AD nên M1N1 // DF Mà DF ⊂ (DEF) suy ra M1N1 // mp(DEF) c. Ta có : M1N1 // DF , NN1 // EF mà M1N1 và NN1 cắt nhau và nằm trong mp(MNN1M1), còn DF và EF cắt nhau và nằm trong mp(DEF) Vậy mp(MNN1M1) // mp(DEF) Loigiaihay.com
Quảng cáo
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
|