tuyensinh247

Câu 3.22 trang 89 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho dãy số

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(({u_n}),\) với \({u_n} = \sin {{n\pi } \over 3} + \cos {{n\pi } \over 6}.\)

LG a

Hãy tính \({u_1},{u_2},{u_3},{u_4},{u_5}.\)

Lời giải chi tiết:

\(\eqalign{
& {u_1} = \sqrt 3 \cr 
& {u_2} = {{\sqrt 3 + 1} \over 2} \cr 
& {u_3} = 0 \cr 
& {u_4} = - \sqrt 3 \cr 
& {u_5} = - \sqrt 3 \cr} \)

LG b

Chứng minh rằng \({u_n} = {u_{n + 12}}\) với mọi \(n \ge 1.\)

Lời giải chi tiết:

Với n là một số nguyên dương tùy ý, ta có

\(\eqalign{
& {u_{n + 12}} = \sin {{\left( {n + 12} \right)\pi } \over 3} + \cos {{\left( {n + 12} \right)\pi } \over 6} \cr 
& \,\,\,\,\,\,\,\,\,\, = \sin \left( {{{n\pi } \over 3} + 4\pi } \right) + \cos \left( {{{n\pi } \over 6} + 2\pi } \right) \cr 
& \,\,\,\,\,\,\,\,\, = \sin {{n\pi } \over 3} + \cos {{n\pi } \over 6} = {u_n} \cr} \)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close