Câu 28 trang 112 SGK Hình học 11 Nâng cao

Cho tam giác ABC và mặt phẳng (P). Biết góc giữa mp(P) và mp(ABC) là φ (φ ≠ 90˚); hình chiếu của tam giác ABC trên mp(P) là tam giác A’B’C’. Chứng minh rằng

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác ABC và mặt phẳng (P). Biết góc giữa mp(P) và mp(ABC) là φ (φ ≠ 90˚); hình chiếu của tam giác ABC trên mp(P) là tam giác A’B’C’. Chứng minh rằng

\({S_{A'B'C'}} = {S_{ABC}}.\cos \varphi \)

Hướng dẫn. Xét hai trường hợp :

a) Tam giác ABC có 1 cạnh song song hoặc nằm trong mp(P).

b) Tam giác ABC không có cạnh nào song song hay nằm trong mp(P).

LG a

Tam giác ABC có một cạnh song song hoặc nằm trong mp(P)

Lời giải chi tiết:

Xét trường hợp tam giác ABC có một cạnh, chẳng hạn BC nằm trong mp(P). Gọi A’ là hình chiếu của A trên mp(P).

Kẻ đường cao A’H của tam giác A’BC (H ϵ BC) thì AH là đường cao của tam giác ABC và \(\widehat {AHA'} = \varphi ,A'H = AH\cos \varphi .\)

Ta có: \({S_{A'BC}} = {1 \over 2}BC.A'H \) \(= {1 \over 2}BC.AH\cos \varphi  = {S_{ABC.cos\varphi }}\)

Trường hợp cạnh BC của tam giác ABC song song với mp(P). Xét mp(Q) chứa BC và song song với mp(P), gọi giao điểm của AA’ với mp(Q) là A1. Khi đó ta có ΔA1BC = ΔA’B’C’ ; góc giữa mp(ABC) và mp(Q) bằng φ.

Do đó : \({S_{A'B'C'}} = {S_{{A_1}BC}} = {S_{ABC }.\cos \varphi}\)

LG b

Tam giác ABC không có cạnh nào song song hay nằm trong mp(P).

Lời giải chi tiết:

 

Xét trường hợp tam giác ABC không có cạnh nào song song hay nằm trong mp(P).

Ta có thể giả sử mp(P) đi qua điểm A sao cho các đỉnh B, C ở về cùng một phía đối với mp(P).

Gọi D là giao điểm của đường thẳng BC và mp(P); B’, C’ lần lượt là hình chiếu của B, C trên (P) thì B’C’ đi qua D.

Khi đó theo trường hợp a ta có :

\(\eqalign{  & {S_{ADC'}} = {S_{ADC.\cos \varphi }}  \cr  & {S_{ADB'}} = {S_{ABD.\cos \varphi }} \cr} \)

Trừ từng vế hai đẳng thức trên, ta có :

\({S_{AB'C'}} = {S_{ABC.\cos \varphi }}\)

Vậy mọi trường hợp ta đều có :

\({S_{A'B'C'}} = {S_{ABC.\cos \varphi }}\)

Loigiaihay.com

  • Câu 27 trang 112 SGK Hình học 11 Nâng cao

    Cho hai tam giác ACD, BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Gọi I, J lần lượt là trung điểm của AB và CD.

  • Câu 26 trang 112 SGK Hình học 11 Nâng cao

    Hình hộp ABCD.A’B’C’D’ là hình hộp gì nếu thỏa mãn một trong các điều kiện sau ?

  • Câu 25 trang 112 SGK Hình học 11 Nâng cao

    Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến Δ. Lấy A, B cùng thuộc Δ và lấy C ϵ (P), D ϵ (Q) sao cho AC ⊥ AB, BD ⊥ AB và AB = AC = BD. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (α) đi qua điểm A và vuông góc với CD. Tính diện tích thiết diện khi AC = AB = BD = a.

  • Câu 24 trang 111 SGK Hình học 11 Nâng cao

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ⊥ (ABCD), SA = x. Xác định x để hai mặt phẳng (SBC) và (SDC) tạo với nhau góc 60˚.

  • Câu 23 trang 111 SGK Hình học 11 Nâng cao

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. a. Chứng minh rằng AC’ vuông góc với hai mặt phẳng (A’BD) và (B’CD’). b. Cắt hình lập phương bởi mặt phẳng trung trực của AC’. Chứng minh thiết diện tạo thành là một lục giác đều. Tính diện tích thiết diện đó.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close