Bài 26 trang 9 SBT Hình Học 11 nâng caoGiải bài 26 trang 9 sách bài tập Hình Học 11 nâng cao. Chứng minh rằng m chỉ cắt (H) tại điểm M duy nhất.( Đường thẳng m như thế được gọi là tiếp tuyến của (H) tại điểm M). Quảng cáo
Đề bài Cho hypebol (H) với hai tiêu điểm \({F_1}\) và \({F_2}\). Gọi M là một điểm nằm trên (H) nhưng không nằm trên đường thẳng \({F_1}{F_2}\) và m là phân giác trong tại đỉnh M của tam giác \(M{F_1}{F_2}\). Chứng minh rằng m chỉ cắt (H) tại điểm M duy nhất.( Đường thẳng m như thế được gọi là tiếp tuyến của (H) tại điểm M). Lời giải chi tiết Giả sử hypebol (H) có trục thức là 2a, nghĩa là điểm M nằm trên (H) khi và chỉ khi: \(\left| {M{F_1} - M{F_2}} \right| = 2a\) Ta xét trường hợp \(M{F_1} - M{F_2} = 2a\) (trường hợp \(M{F_2} - M{F_1} = 2a\) chứng minh tương tự). Gọi F’ là điểm đối xứng với \(F_2\) qua phân giác m thì F’ nằm giữa M và \(F_1\). Khi đó, nếu lấy M’ nằm trên m thì: \(\eqalign{ Dấu bằng chỉ xảy ra khi M’ trùng M. Vậy nếu M’ khác M thì M’ không nằm trên (H). Từ đó suy ra m cắt (H) tại điểm duy nhất M. Loigiaihay.com
Quảng cáo
|