Câu 24 trang 205 SGK Đại số và Giải tích 11 Nâng caoViết phương trình tiếp tuyến của đồ thị hàm số Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Viết phương trình tiếp tuyến của đồ thị hàm số LG a \(y = {{x - 1} \over {x + 1}}\), biết hoành độ tiếp điểm là x0 = 0 Phương pháp giải: Phương trình tiếp tuyến tại điểm \(M(x_0;y_0)\) là: \(y-y_0=f'(x_0)(x-x_0)\) Lời giải chi tiết: \(\eqalign{ & f\left( x \right) = {{x - 1} \over {x + 1}} \cr & {x_0} = 0 \Rightarrow {y_0} = f\left( 0 \right) = - 1 \cr & f'\left( x \right) \cr & = \frac{{\left( {x - 1} \right)'\left( {x + 1} \right) - \left( {x - 1} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} \cr &= \frac{{x + 1 - x + 1}}{{{{\left( {x + 1} \right)}^2}}}\cr & = {2 \over {{{\left( {x + 1} \right)}^2}}} \cr &\Rightarrow f'\left( 0 \right) = 2 \cr} \) Phương trình tiếp tuyến cần tìm là : \(y - \left( { - 1} \right) = 2\left( {x - 0} \right) \Leftrightarrow y = 2x - 1\) LG b \(y = \sqrt {x + 2} ,\) biết tung độ tiếp điểm là y0 = 2. Lời giải chi tiết: \(\eqalign{ & f\left( x \right) = \sqrt {x + 2} \cr &f\left( {{x_0}} \right) = 2 \Leftrightarrow \sqrt {{x_0} + 2} = 2 \cr &\Leftrightarrow {x_0} = 2 \cr & f'\left( x \right) = {1 \over {2\sqrt {x + 2} }} \Rightarrow f'\left( 2 \right) = {1 \over 4} \cr} \) Phương trình tiếp tuyến cần tìm là : \(y - 2 = {1 \over 4}\left( {x - 2} \right) \Leftrightarrow y = {{x + 6} \over 4}\) Loigiaihay.com
Quảng cáo
|