Câu 20 trang 67 SGK Đại số và Giải tích 11 Nâng caoTính hệ số Quảng cáo
Đề bài Tính hệ số của \({x^9}\) trong khai triển \({\left( {2 - x} \right)^{19}}\) Lời giải chi tiết Ta có: \({\left( {2 - x} \right)^{19}} = \sum\limits_{k = 0}^{19} {C_{19}^k{2^{19 - k}}{{\left( { - x} \right)}^k}} \) \( = \sum\limits_{k = 0}^{19} {C_{19}^k{2^{19 - k}}.{{\left( { - 1} \right)}^k}{x^k}} \) Hệ số của \({x^9}\) (ứng với \( k = 9\)) là \( (-1)^{19} C_{19}^9{2^{10}} = - 94595072\) Loigiaihay.com
Quảng cáo
|