2K8! QUY CHẾ TUYỂN SINH MỚI ẢNH HƯỞNG THẾ NÀO ĐẾN 2K8

GIẢI ĐÁP THẮC MẮC VÀ ĐỊNH HƯỚNG HỌC TẬP LỚP 12

THAM GIA NGAY
Xem chi tiết

Bài 2 trang 107 SGK Đại số và Giải tích 11

Cho cấp số nhân có u1 < 0 và công bội q. Hỏi các số hạng khác sẽ mang dấu gì trong các trường hợp sau:

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho cấp số nhân có \(u_1< 0\) và công bội \(q\). Hỏi các số hạng khác sẽ mang dấu gì trong các trường hợp sau:

LG a

\(q > 0\)

Phương pháp giải:

SHTQ của cấp số nhân: \({u_n} = {u_1}{q^{n - 1}}\) với \(u_1\) là số hạng đầu của CSN và \(q\) là công bội của CSN.

Lời giải chi tiết:

Ta có: \(u_n=u_1q^{n-1}\)

\(q > 0 \Rightarrow {q^{n - 1}} > 0 \Rightarrow {u_1}.{q^{n - 1}} < 0\)

(vì \(u_1 < 0\))

\( \Rightarrow {u_n} < 0,\forall n\)

Quảng cáo

Lộ trình SUN 2026

LG b

\(q < 0\)

Lời giải chi tiết:

Do \(q < 0\) nên:

+ Nếu \(n\) chẵn \( \Rightarrow \;\;n-1\) lẻ \( \Rightarrow \;{q^{n{\rm{ }}-{\rm{ }}1}}\; < 0\)

\( \Rightarrow \;{u_1}.{q^{n{\rm{ }}-{\rm{ }}1}}\; > 0{\rm{ }}({\rm{Vì }}\,{u_1}\; < 0).\)

\( \Rightarrow \;{u_n}\; > 0.\)

+ Nếu \(n\) lẻ \( \Rightarrow \;\;n-1\) chẵn \( \Rightarrow \;{q^{n{\rm{ }}-{\rm{ }}1}}\; > 0\)

\( \Rightarrow \;{u_1}.{q^{n{\rm{ }}-{\rm{ }}1}}\; < 0{\rm{ }}({\rm{Vì }\,}{u_1}\; < 0).\)

\( \Rightarrow \;{u_n}\; < 0.\)

Vậy nếu \(q < 0,{\rm{ }}{u_1}\; < 0\) thì các số hạng thứ chẵn dương và các số hạng thứ lẻ âm.

 Loigiaihay.com

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

close