Bài 1.17 trang 9 SBT Đại số và Giải tích 11 Nâng caoGiải bài 1.17 trang 9 sách bài tập Đại số và Giải tích 11 Nâng cao. Phép tịnh tiến theo vectơ ... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến đồ thị của mỗi hàm số sau thành đồ thị hàm số nào ? LG a \(y = \sin x\) Phương pháp giải: Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\) \(\left\{ \matrix{ Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) . Lời giải chi tiết: \(y = \sin \left( {x - {\pi \over 4}} \right) + 1\) LG b \(y = \cos 2x - 1\) Phương pháp giải: Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\) \(\left\{ \matrix{ Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) . Lời giải chi tiết: \(y = \sin 2x,\) (do \(y = \cos 2\left( {x - {\pi \over 4}} \right) = \sin 2x\)) LG c \(y = 2\sin \left( {x + {\pi \over 4}} \right)\) Phương pháp giải: Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\) \(\left\{ \matrix{ Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) . Lời giải chi tiết: \(y = 2\sin x + 1\) LG d \(y = \cos \left| x \right| - 1\) Phương pháp giải: Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\) \(\left\{ \matrix{ Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) . Lời giải chi tiết: \(y = \cos \left| {x - {\pi \over 4}} \right|\) Loigiaihay.com
Quảng cáo
|