Bài 1.13 trang 9 SBT Đại số và Giải tích 11 Nâng caoGiải bài 1.13 trang 9 sách bài tập Đại số và Giải tích 11 Nâng cao. Cho biết đồ thị (h.1.3) sau... Quảng cáo
Đề bài Cho biết đồ thị (h.1.3) sau là đồ thị hàm số \(y = A\sin \left( {x + \alpha } \right) + B\) (\(A,B,\alpha \) là những hằng số). Hãy xác định \(A,B,\alpha \).
Lời giải chi tiết Hàm số \(y = A\sin \left( {x + \alpha } \right) + B\) đạt giá trị lớn nhất là 3 tại \(x = {\pi \over 6}\) (coi \(A > 0\)) nên: \(\left\{ \matrix{ Hàm số \(y = A\sin \left( {x + \alpha } \right) + B\) đạt giá trị nhỏ nhất là -1 tại \(x = - {{5\pi } \over 6}\) nên: \(\left\{ \matrix{ Từ đó \(B = 1,A = 2\) và chú ý rằng \(\sin \left( { - {{5\pi } \over 6} + \alpha } \right) = \sin \left( {{\pi \over 6} + \alpha - \pi } \right)\) \( = \sin \left( {{\pi \over 6} + \alpha } \right)\) Nên chỉ cần chọn \(\alpha \) sao cho \(\left( {{\pi \over 6} + \alpha } \right) = 1,\) chẳng hạn \(\alpha = {\pi \over 3}\) Vậy \(A = 2,B = 1,\alpha = {\pi \over 3}\) Loigiaihay.com
Quảng cáo
|