-
Bài 11 trang 29
Cho (D) là hình phẳng giới hạn bởi đồ thị hàm số (y = sqrt {x + 1} ), trục tung, trục hoành và đường thẳng (x = 2). Thể tích của khối tròn xoay khi quay (D) quanh trục hoành bằng A. (6pi ) B. (2pi ) C. (3pi ) D. (4pi )
Xem chi tiết -
Bài 12 trang 29
Cho hàm số (y = fleft( x right)). Đồ thị của hàm số (y = f'left( x right)) là đường cong trong hình dưới đây. Biết rằng diện tích các phần hình phẳng (A) và (B) lần lượt là ({S_A} = 2) và ({S_B} = 3). Nếu (fleft( 0 right) = 4) thì giá trị của (fleft( 5 right)) bằng A. (3) B. (5) C. (9) D. ( - 1)
Xem chi tiết -
Bài 13 trang 29
Tìm: a) (int {left[ {4{{left( {2 - 3x} right)}^2} - 3cos x} right]dx} ) b) (int {left( {3{x^3} - frac{1}{{2{x^3}}}} right)dx} ) c) (int {left( {frac{2}{{{{sin }^2}x}} - frac{1}{{3{{cos }^2}x}}} right)dx} ) d) (int {left( {{3^2}x - 2 + 4cos x} right)dx} ) e) (int {left( {4sqrt[5]{{{x^4}}} + frac{3}{{sqrt {{x^3}} }}} right)dx} ) g) (int {{{left( {sin frac{x}{2} - cos frac{x}{2}} right)}^2}dx} )
Xem chi tiết -
Bài 14 trang 29
Tính đạo hàm của (Fleft( x right) = ln left( {x + sqrt {{x^2} + 1} } right)). Từ đó suy ra nguyên hàm của (fleft( x right) = frac{1}{{sqrt {{x^2} + 1} }}).
Xem chi tiết -
Bài 15 trang 29
Cho (fleft( x right) = {x^2}ln x) và (gleft( x right) = xln x). Tính (f'left( x right)) và (int {gleft( x right)dx} ).
Xem chi tiết -
Bài 16 trang 29
Tính các tích phân sau: a) (intlimits_0^1 {left( {4{x^3} + x} right)dx} ) b) (intlimits_1^2 {frac{{x - 2}}{{{x^2}}}dx} ) c) (intlimits_0^4 {{2^{2x}}dx} ) d) (intlimits_1^2 {left( {{e^{x - 1}} + {2^{x + 1}}} right)dx} )
Xem chi tiết -
Bài 17 trang 29
Tính các tích phân sau: a) (intlimits_{frac{pi }{6}}^{frac{pi }{4}} {frac{1}{{{{sin }^2}x}}dx} ) b) (intlimits_0^{frac{pi }{4}} {left( {1 + tan x} right)cos xdx} )
Xem chi tiết -
Bài 18 trang 29
Một vật chuyển động với tốc độ (vleft( t right) = 3t + 4{rm{ }}left( {{rm{m/s}}} right)), với thời gian (t) tính theo giây, (t in left[ {0;5} right]). Tính quãng đường vật đi được trong khoảng thời gian từ (t = 0) đến (t = 5).
Xem chi tiết -
Bài 19 trang 29
Một chất điểm đang chuyển động với tốc độ ({v_0} = 1{rm{ }}left( {{rm{m/s}}} right)) thì tăng tốc với gia tốc không đổi (a = 3{rm{ m/}}{{rm{s}}^2}). Hỏi tốc độ của chất điểm là bao nhiêu sau 10 giây kể từ khi bắt đầu tăng tốc?
Xem chi tiết -
Bài 20 trang 30
Tốc độ tăng dân số của một thành phố trong một số năm được ước lượng bởi công thức (P'left( t right) = 20.{left( {1,106} right)^t}) với (0 le t le 7), trong đó (t) là thời gian tính theo năm và (t = 0) ứng với đầu năm 2015, (Pleft( t right)) là dân số của thành phố tính theo nghìn người. Cho biết dân số của thành phố đầu năm 2015 là 1008 nghìn người. a) Tính dân số của thành phố ở thời điểm đầu năm 2020 (làm tròn đến nghìn người). b) Tính tốc độ tăng dân số trung bình hằng n
Xem chi tiết