Bài 9 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạoXét tính tăng, giảm của dãy số (left( {{u_n}} right)) với ({u_n} = frac{{{3^n} - 1}}{{{2^n}}}). Quảng cáo
Đề bài Xét tính tăng, giảm của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{{3^n} - 1}}{{{2^n}}}\). Phương pháp giải - Xem chi tiết Bước 1: Tìm \({u_{n + 1}}\). Bước 2: Xét hiệu \({u_{n + 1}} - {u_n}\). Bước 3: Kết luận: – Nếu \({u_{n + 1}} - {u_n} > 0\) thì \({u_{n + 1}} > {u_n},\forall n \in {\mathbb{N}^*}\), vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng. – Nếu \({u_{n + 1}} - {u_n} < 0\) thì \({u_{n + 1}} < {u_n},\forall n \in {\mathbb{N}^*}\), vậy dãy số \(\left( {{u_n}} \right)\) là dãy số giảm. Lời giải chi tiết Ta có: \({u_{n + 1}} = \frac{{{3^{n + 1}} - 1}}{{{2^{n + 1}}}} = \frac{{{{3.3}^n} - 1}}{{{{2.2}^n}}}\). Xét hiệu: \(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{{{3.3}^n} - 1}}{{{{2.2}^n}}} - \frac{{{3^n} - 1}}{{{2^n}}} = \frac{{\left( {{{3.3}^n} - 1} \right) - 2.\left( {{3^n} - 1} \right)}}{{{{2.2}^n}}}\\ = \frac{{{{3.3}^n} - 1 - {{2.3}^n} + 2}}{{{{2.2}^n}}} = \frac{{{3^n} + 1}}{{{2^{n + 1}}}} > 0,\forall n \in {\mathbb{N}^*}\\\end{array}\) Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
Quảng cáo
|