Bài 9 trang 128 SGK Hình học 10 nâng caoXác định tọa độ tiêu điểm F và phương trình đường chuẩn d của (P) Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Cho parabol (P) có phương trình y2 = 4x. LG a Xác định tọa độ tiêu điểm F và phương trình đường chuẩn d của (P). Lời giải chi tiết: Ta có p = 2. Tọa độ tiêu điểm của (P) là F(1, 0). Phương trình đường chuẩn d: x + 1 = 0. LG b Đường thẳng Δ có phương trình \(y = m\,,\,\,(m \ne 0)\) lần lượt cắt d, Oy, (P) tại các điểm K, H, M. Tìm tọa độ của các điểm đó. Lời giải chi tiết: LG c Gọi I là trung điểm của OH. Viết phương trình đường thẳng IM và chứng tỏ rằng đường thẳng IM cắt (P) tại một điểm duy nhất. Lời giải chi tiết: Tọa độ giao điểm của IM với (P) là nghiệm của hệ \(\eqalign{ Vậy IM cắt (P) tại một điểm duy nhất \(M\left( {{{{m^2}} \over 4}\,;\,m} \right)\) LG d Chứng minh rằng \(MI \bot KF\) . Từ đó suy ra IM là phân giác của góc KMF. Lời giải chi tiết: Ta có \(\overrightarrow {MI} = \left( { - {{{m^2}} \over 4}\,;\, - {m \over 2}} \right),\) \(\overrightarrow {KF} = (2\,;\, - m)\) . Suy ra \(\overrightarrow {MI} .\,\overrightarrow {KF} = - {{{m^2}} \over 2} + {{{m^2}} \over 2} = 0\) \( \Rightarrow \,\,MI \bot KF\) Tam giác \(KMF\) cân tại M (do MF = MK). MI là đường cao nên là phân giác góc KMF. Loigiaihay.com
Quảng cáo
|