Bài 8.18 trang 79 SGK Toán 11 tập 2 - Kết nối tri thức

Xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp là

Quảng cáo

Đề bài

Tại một hội thảo quốc tế có 50 nhà khoa học, trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người trong hội thảo.

Xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp là

A. \(\frac{{47}}{{50}}.\)                           

B. \(\frac{{37}}{{50}}.\)                           

C. \(\frac{{39}}{{50}}.\)                            

D. \(\frac{{41}}{{50}}.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Công thức cộng xác suất \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\)

Lời giải chi tiết

Gọi A là biến cố “Người thành thạo tiếng Anh”; B là biến cố “Người thành thạo tiếng Pháp”.

Khi đó \(P\left( A \right) = \frac{{31}}{{50}},P\left( B \right) = \frac{{21}}{{50}},P\left( {AB} \right) = \frac{5}{{50}} = \frac{1}{{10}}\)

Ta có \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{31}}{{50}} + \frac{{21}}{{50}} - \frac{1}{{10}} = \frac{{47}}{{50}}\)

Vậy xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp là \(\frac{{47}}{{50}}.\)

Đáp án A

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close