Bài 73 trang 114 SBT Hình học 10 Nâng caoGiải bài tập Bài 73 trang 114 SBT Hình học 10 Nâng cao Quảng cáo
Đề bài Xác định độ dài trục thực, trục ảo; tiêu cự; tâm sai; tọa độ các tiêu điểm, các đỉnh và phương trình các đường tiệm cận của mỗi hypebol có phương trình sau a) \( \dfrac{{{x^2}}}{{16}} - \dfrac{{{y^2}}}{4} = 1;\) b) \(4{x^2} - {y^2} = 4;\) c) \(16{x^2} - 25{y^2} = 400;\) d) \(16{x^2} - 9{y^2} = 16;\) e) \({x^2} - {y^2} = 1;\) f) \(m{x^2} - n{y^2} = 1 (m > 0, n > 0).\) Vẽ các hypebol có phương trình ở câu a), b) và e). Lời giải chi tiết a) \({a^2} = 16 \Rightarrow a = 4 ; \) \( {b^2} = 4 \Rightarrow b = 2; \) \( {c^2} = {a^2} + {b^2} = 20 \Rightarrow c = 2\sqrt 5 \). Độ dài trục thực : \(2a=8.\) Độ dài trục ảo : \(2b=4.\) Tiêu cự: \(2c = 4\sqrt 5 \), tâm sai \(e = \dfrac{c}{a} = \dfrac{{\sqrt 5 }}{2}\). Các tiêu điểm : \({F_1}( - 2\sqrt 5 ; 0) , {F_2}(2\sqrt 5 ; 0)\) Các đỉnh : \({A_1}( - 4 ; 0) , {A_2}(4 ; 0)\). Các tiệm cận : \(y = \pm \dfrac{b}{a}x = \pm \dfrac{1}{2}x\) Hypebol được vẽ như hình 115.
b), c), d), e) làm tương tự. f) Viết lại phương trình hypebol: \(\begin{array}{l} \dfrac{{{x^2}}}{{ \dfrac{1}{m}}} - \dfrac{{{y^2}}}{{ \dfrac{1}{n}}} = 1.\\{a^2} = \dfrac{1}{m} \Rightarrow a = \dfrac{1}{{\sqrt m }} ,\\ {b^2} = \dfrac{1}{n} \Rightarrow b = \dfrac{1}{{\sqrt n }}.\\{c^2} = {a^2} + {b^2} = \dfrac{1}{m} + \dfrac{1}{n} \\ \Rightarrow c = \sqrt { \dfrac{{m + n}}{{mn}}} .\end{array}\) Độ dài trục thực : \(2a = \dfrac{2}{{\sqrt m }}\) , độ dài trục ảo : \(2b = \dfrac{2}{{\sqrt n }}\). Tiêu cự : \(2c = 2\sqrt { \dfrac{{m + n}}{{mn}}} \). Các tiêu điểm : \({F_1} = \left( { - \sqrt { \dfrac{{m + n}}{{mn}}} ; 0} \right) ,\) \( {F_2} = \left( {\sqrt { \dfrac{{m + n}}{{mn}}} ; 0} \right)\). Các đỉnh : \({A_1} = \left( { - \dfrac{1}{{\sqrt m }} ; 0} \right) , {A_2} = \left( { \dfrac{1}{{\sqrt m }} ; 0} \right)\). Các tiệm cận: \(y = \pm \sqrt { \dfrac{m}{n}} .x\). Loigiaihay.com
Quảng cáo
|