Bài 7 trang 221 SGK Đại số 10 Nâng cao

Không giải phương trình, tính gần đúng tổng các bình phương hai nghiệm của phương trình (chính xác đến hàng phần trăm)

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình: \({x^2} + 2(\sqrt 3  + 1)x + 2\sqrt 3  = 0\)

LG a

Không giải phương trình, tính gần đúng tổng các bình phương hai nghiệm của phương trình (chính xác đến hàng phần trăm)

Lời giải chi tiết:

Theo định lý Vi-ét, ta có:

\(\eqalign{
& \left\{ \matrix{
{x_1} + {x_2} = - 2(\sqrt 3 + 1) \hfill \cr 
{x_1}{x_2} = 2\sqrt 3 \,\,\,(\Delta ' > 0) \hfill \cr} \right. \cr 
& \Rightarrow x_1^2 + x_2^2 = {({x_1} + {x_2})^2} - 2{x_1}{x_2} \cr&= 4{(\sqrt 3 + 1)^2} - 4\sqrt 3 = 4(4 + \sqrt 3 ) \approx 22,93 \cr} \) 

LG b

Tính nghiệm gần đúng của phương trình (chính xác đến hàng phần trăm).

Lời giải chi tiết:

Có \(\Delta ' = {\left( {\sqrt 3  + 1} \right)^2} - 2\sqrt 3  = 4\) nên phương trình có hai nghiệm phân biệt 

\(\left\{ \begin{array}{l}
{x_1} = - \sqrt 3 - 1 + 2 = 1 - \sqrt 3 \approx - 0,73\\
{x_2} = - \sqrt 3 - 1 - 2 = - 3 - \sqrt 3 \approx - 4,73
\end{array} \right.\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close