Bài 69 trang 154 SGK Đại số 10 nâng cao

Giải các phương trình và bất phương trình sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình và bất phương trình sau

LG a

\(|{{{x^2} - 2} \over {x + 1}}|\, = 2\)

Phương pháp giải:

Giải phương trình 

\(\left| f \right| = a\left( {a > 0} \right) \Leftrightarrow \left[ \begin{array}{l}
f = a\\
f = - a
\end{array} \right.\)

Lời giải chi tiết:

Điều kiện: x ≠ - 1

Ta có:

\(\eqalign{
& |{{{x^2} - 2} \over {x + 1}}|\, = 2 \Leftrightarrow \left[ \matrix{
{{{x^2} - 2} \over {x + 1}} = 2 \hfill \cr 
{{{x^2} - 2} \over {x + 1}} = - 2 \hfill \cr} \right.  \cr} \)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
{x^2} - 2 = 2\left( {x + 1} \right)\\
{x^2} - 2 = - 2\left( {x + 1} \right)
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} - 2 = 2x + 2\\
{x^2} - 2 = - 2x - 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} - 2x - 4 = 0\\
{x^2} + 2x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1 \pm \sqrt 5 \\
x = 0,x = - 2
\end{array} \right.
\end{array}\)

Vậy \(S = {\rm{\{ }}1 \pm \sqrt 5 ;\,0;\,2\} \)

LG b

\(|{{3x + 4} \over {x - 2}}|\, \le   3\)

Phương pháp giải:

Nhân chéo và bình phương hai vế.

Lời giải chi tiết:

Điều kiện: x ≠  2

Ta có:

\(\eqalign{
& |{{3x + 4} \over {x - 2}}|\, \le  3 \Leftrightarrow |3x + 4|\, \le \,3|x - 2| \cr} \)

\(\begin{array}{l}
\Leftrightarrow {\left( {3x + 4} \right)^2} \le 9{\left( {x - 2} \right)^2}\\
\Leftrightarrow 9{x^2} + 24x + 16 \le 9{x^2} - 36x + 36\\
\Leftrightarrow 60x - 20 \le 0\\
\Leftrightarrow x \le \frac{1}{3}
\end{array}\)

Vậy \(S = ( - \infty ,{1 \over 3}{\rm{]}}\).

Cách khác:

LG c

\(|{{2x - 3} \over {x - 3}}|\,\, \ge 1\)

Phương pháp giải:

Nhân chéo và bình phương hai vế.

Lời giải chi tiết:

Điều kiện: x ≠ 3

Ta có:

\(\eqalign{
& |{{2x - 3} \over {x - 3}}|\,\, \ge 1\, \Leftrightarrow \,|2x - 3|\, \ge \,|x - 3| \cr} \)

\(\begin{array}{l}
\Leftrightarrow {\left( {2x - 3} \right)^2} \ge {\left( {x - 3} \right)^2}\\
\Leftrightarrow 4{x^2} - 12x + 9 \ge {x^2} - 6x + 9\\
\Leftrightarrow 3{x^2} - 6x \ge 0\\
\Leftrightarrow \left[ \begin{array}{l}
x \ge 2\\
x \le 0
\end{array} \right.
\end{array}\)

Kết hợp \(x\ne 3\) ta được tập nghiệm \(S = (-∞, 0] ∪ [2, 3) ∪ (3, +∞)\).

LG d

\(|2x + 3| = |4 – 3x|\)

Phương pháp giải:

Phương trình 

\(\left| f \right| = \left| g \right| \Leftrightarrow \left[ \begin{array}{l}
f = g\\
f = - g
\end{array} \right.\)

Hoặc \(\left| f \right| = \left| g \right| \Leftrightarrow {f^2} = {g^2}\)

Lời giải chi tiết:

Ta có:

\(|2x + 3|\, = \,|4 - 3x|\) \( \Leftrightarrow \left[ \matrix{
2x + 3 = 4 - 3x \hfill \cr 
2x + 3 = 3x - 4 \hfill \cr} \right. \)

\( \Leftrightarrow \left[ \begin{array}{l}
5x = 1\\
- x = - 7
\end{array} \right.\)

\(\Leftrightarrow \left[ \matrix{
x = {1 \over 5} \hfill \cr 
x = 7 \hfill \cr} \right.\)

Vậy \(S = {\rm{\{ }}{1 \over 5},7\} \).

Cách khác:

\(\begin{array}{l}
\left| {2x + 3} \right| = \left| {4 - 3x} \right|\\
\Leftrightarrow {\left( {2x + 3} \right)^2} = {\left( {4 - 3x} \right)^2}\\
\Leftrightarrow 4{x^2} + 12x + 9 = 16 - 24x + 9{x^2}\\
\Leftrightarrow - 5{x^2} + 36x - 7 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{1}{5}\\
x = 7
\end{array} \right.
\end{array}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close