Bài 5.7 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức

Cho hai hàm số (fleft( x right) = frac{{{x^2} - 1}}{{x - 1}}) và g(x) = x + 1. Khẳng định nào sau đây là đúng?

Quảng cáo

Đề bài

Cho hai hàm số \(f\left( x \right) = \frac{{{x^2} - 1}}{{x - 1}}\) và g(x) = x + 1. Khẳng định nào sau đây là đúng?

a) f(x) = g(x);

b) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} g\left( x \right)\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Kiểm tra xem ĐKXĐ của 2 hàm số có giống nhau không.

b) Tính giới hạn của hai hàm số.

Lời giải chi tiết

+) Biểu thức f(x) có nghĩa khi x – 1 ≠ 0 ⇔ x ≠ 1.

Ta có: \(f\left( x \right) = \frac{{{x^2} - 1}}{{x - 1}} = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}} = x + 1\), với mọi x ≠ 1.

Biểu thức g(x) = x + 1 có nghĩa với mọi x.

Do đó, điều kiện xác định của hai hàm số f(x) và g(x) khác nhau, vậy khẳng định a) là sai.

+) Ta có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = 1 + 1 = 2\);

Vậy \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} g\left( x \right)\) nên khẳng định b) là đúng.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close