Bài 53 trang 34 SGK Toán 8 tập 2

Giải phương trình:

Quảng cáo

Đề bài

Giải phương trình:

\(\dfrac{{x + 1}}{9} + \dfrac{{x + 2}}{8} = \dfrac{{x + 3}}{7} + \dfrac{{x + 4}}{6}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Cộng \(2\) vào hai vế của phương trình sau đó giải phương trình mới để tìm \( x\).

Lời giải chi tiết

Cộng \(2\) vào hai vế của phương trình, ta được:

\(\dfrac{{x + 1}}{9} + 1 + \dfrac{{x + 2}}{8} + 1 = \dfrac{{x + 3}}{7} + 1\)\(\, + \dfrac{{x + 4}}{6} + 1\)

\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} = \dfrac{{x + 10}}{7} \)\(\,+ \dfrac{{x + 10}}{6}\)

\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} - \dfrac{{x + 10}}{7}\)\(\, - \dfrac{{x + 10}}{6}=0\)

\( \Leftrightarrow \left( {x + 10} \right)\left( {\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6}} \right) = 0{\kern 1pt}\)\( \;(*)\)

Vì \(\dfrac{1}{9} < \dfrac{1}{7};\dfrac{1}{8} < \dfrac{1}{6}\) nên \(\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6} < 0\)

 \((*) \Leftrightarrow   x+10 = 0 \)

\(\Leftrightarrow  x= -10 \)

Vậy phương trình có nghiệm duy nhất \(x = -10\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close