Bài 5 trang 11 SGK Toán 9 tập 2

Giải bài 5 trang 11 SGK Toán 9 tập 2. Đoán nhận số nghiệm của hệ phương trình sau bằng hình học:

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

Đoán nhận số nghiệm của hệ phương trình sau bằng hình học:

a) \( \left\{ \matrix{2{\rm{x}} - y = 1 \hfill \cr x - 2y = - 1 \hfill \cr} \right. \);           b) \( \left\{ \matrix{2{\rm{x + }}y = 4 \hfill \cr - x + y = 1 \hfill \cr} \right. \)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Ta biến đổi các hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right.\)  

Gọi đường thẳng \((d):y=ax+b \) và đường thẳng \((d'): y=a'x+b' \). 

+) Vẽ đường thẳng \((d)\) và \((d')\) biểu diễn tập nghiệm của hai phương trình trên cùng một hệ tọa độ.

+) Tìm giao điểm.

+) Thử lại tọa độ giao điểm đó vào hệ hai phương trình ban đầu. Nếu thỏa mãn thì là nghiệm của hệ.

Lời giải chi tiết

a) Ta có:

\(\left\{ \matrix{
2x - y = 1 \hfill \cr
x - 2y = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 2x - 1 \  (d)\hfill \cr
y = \dfrac{1}{2}x + \dfrac{1}{2} \ (d')  \hfill \cr} \right.\)

+) Vẽ \((d)\): \(y=2x-1\)

Cho \(x = 0 \Rightarrow y = -1\), ta được \(A(0; -1)\).

Cho \(y = 0 \Rightarrow  x = \dfrac{1}{2}\), ta được \(B{\left(\dfrac{1}{2}; 0 \right)}\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).

+) Vẽ \((d')\): \(y=\dfrac{1}{2}x+\dfrac{1}{2}\)

Cho \(x = 0 \Rightarrow y = \dfrac{1}{2}\), ta được \(C {\left(0; \dfrac{1}{2} \right)}\).

Cho \(y = 0 \Rightarrow x = -1\), ta được \(D = (-1; 0)\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(C,\ D\).

+) Quan sát hình vẽ, ta thấy hai đường thẳng cắt nhau tại điểm có tọa độ \(M( 1, 1)\).

Thay \(x = 1, y = 1\) vào các phương trình của hệ ta được:

\(\left\{ \begin{array}{l}2x - y = 1\\x - 2y =  - 1\end{array} \right.\)

\(\Rightarrow\left\{ \begin{array}{l}2.1 - 1 = 1\\1 - 2.1 =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 = 1\\ - 1 =  - 1\end{array} \right.\)  (luôn đúng) 

Vậy hệ phương trình có một nghiệm \((x; y) = (1; 1)\).

b) Ta có:

\(\left\{ \matrix{
2x + y = 4 \hfill \cr
- x + y = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = - 2x + 4 \ (d) \hfill \cr
y = x + 1 \ (d') \hfill \cr} \right.\)

+) Vẽ \((d)\): \(y=-2x+4\)

Cho \(x = 0 \Rightarrow y = 4\), ta được \(A(0; 4)\).

Cho \(y = 0 \Rightarrow x = 2\), ta được \(B(2; 0)\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).

Vẽ \((d')\): \(y=x+1\)

Cho \(x = 0 \Rightarrow y = 1\), ta được \(C(0; 1)\).

Cho \(y = 0 \Rightarrow x = -1\), ta được \(D(-1; 0)\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(C,\ D\).

Quan sát hình vẽ, ta thấy hai đường thẳng cắt nhau tại điểm có tọa độ \(N(1;2)\).

Thay \(x = 1, y = 2\) vào các phương trình của hệ ta được:

\(\left\{ \begin{array}{l}2x + y = 4\\ - x + y = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2.1 + 2 = 4\\ - 1 + 2 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4 = 4\\1 = 1\end{array} \right.\)  (luôn đúng) 

Vậy hệ phương trình có một nghiệm \((x; y) = (1; 2)\).

loigiaihay.com

Quảng cáo

Gửi bài tập - Có ngay lời giải