Bài 5 trang 11 SGK Toán 9 tập 2

Đoán nhận số nghiệm của hệ phương trình sau bằng hình học:

Quảng cáo

Đề bài

Đoán nhận số nghiệm của hệ phương trình sau bằng hình học:

a) \( \left\{ \matrix{2{\rm{x}} - y = 1 \hfill \cr x - 2y = - 1 \hfill \cr} \right. \);           b) \( \left\{ \matrix{2{\rm{x + }}y = 4 \hfill \cr - x + y = 1 \hfill \cr} \right. \)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Ta biến đổi các hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right.\)  

Gọi đường thẳng \((d):y=ax+b \) và đường thẳng \((d'): y=a'x+b' \). 

+) Vẽ đường thẳng \((d)\) và \((d')\) biểu diễn tập nghiệm của hai phương trình trên cùng một hệ tọa độ.

+) Tìm giao điểm.

+) Thử lại tọa độ giao điểm đó vào hệ hai phương trình ban đầu. Nếu thỏa mãn thì là nghiệm của hệ.

Lời giải chi tiết

a) Ta có: 

\(\left\{ \matrix{
2x - y = 1 \hfill \cr
x - 2y = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 2x - 1 \  (d)\hfill \cr
y = \dfrac{1}{2}x + \dfrac{1}{2} \ (d')  \hfill \cr} \right.\)

+) Vẽ \((d)\): \(y=2x-1\)

Cho \(x = 0 \Rightarrow y = -1\), ta được \(A(0; -1)\).

Cho \(y = 0 \Rightarrow  x = \dfrac{1}{2}\), ta được \(B{\left(\dfrac{1}{2}; 0 \right)}\).

Đường thẳng (d) là đường thẳng đi qua hai điểm \(A,\ B\).

+) Vẽ \((d')\): \(y=\dfrac{1}{2}x+\dfrac{1}{2}\)

Cho \(x = 0 \Rightarrow y = \dfrac{1}{2}\), ta được \(C {\left(0; \dfrac{1}{2} \right)}\).

Cho \(y = 0 \Rightarrow x = -1\), ta được \(D = (-1; 0)\).

Đường thẳng (d') là đường thẳng đi qua hai điểm \(C,\ D\).

+) Quan sát hình vẽ, ta thấy hai đường thẳng cắt nhau tại điểm có tọa độ \(M( 1, 1)\).

Thay \(x = 1, y = 1\) vào các phương trình của hệ ta được:

\(\left\{ \begin{array}{l}2x - y = 1\\x - 2y =  - 1\end{array} \right.\)

\(\Rightarrow\left\{ \begin{array}{l}2.1 - 1 = 1\\1 - 2.1 =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 = 1\\ - 1 =  - 1\end{array} \right.\)  (luôn đúng) 

Vậy hệ phương trình có một nghiệm \((x; y) = (1; 1)\).

b) Ta có:

\(\left\{ \matrix{
2x + y = 4 \hfill \cr
- x + y = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = - 2x + 4 \ (d) \hfill \cr
y = x + 1 \ (d') \hfill \cr} \right.\)

+) Vẽ \((d)\): \(y=-2x+4\)

Cho \(x = 0 \Rightarrow y = 4\), ta được \(A(0; 4)\).

Cho \(y = 0 \Rightarrow x = 2\), ta được \(B(2; 0)\).

Đường thẳng (d) là đường thẳng đi qua hai điểm \(A,\ B\).

Vẽ \((d')\): \(y=x+1\)

Cho \(x = 0 \Rightarrow y = 1\), ta được \(C(0; 1)\).

Cho \(y = 0 \Rightarrow x = -1\), ta được \(D(-1; 0)\).

Đường thẳng (d') là đường thẳng đi qua hai điểm \(C,\ D\).

Quan sát hình vẽ, ta thấy hai đường thẳng cắt nhau tại điểm có tọa độ \(N(1;2)\).

Thay \(x = 1, y = 2\) vào các phương trình của hệ ta được:

\(\left\{ \begin{array}{l}2x + y = 4\\ - x + y = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2.1 + 2 = 4\\ - 1 + 2 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4 = 4\\1 = 1\end{array} \right.\)  (luôn đúng) 

Vậy hệ phương trình có một nghiệm \((x; y) = (1; 2)\).

Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close