Bài 47 trang 126 Sách bài tập Hình học lớp 12 Nâng cao

a)Viết phương trình mp(P)

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình mp(P) chứa trục Oz và tạo với mặt phẳng \(\left( \alpha  \right)\) có phương trình \(2x + y - \sqrt 5 z = 0\) một góc \({60^0}.\)

Lời giải chi tiết:

Mặt phẳng (P) chứa Oz nên có dạng Ax+By=0\( \Rightarrow \overrightarrow {{n_P}}  = (A;B;0).\)

Ta có \(\overrightarrow {{n_\alpha }}  = (2;1; - \sqrt 5 ).\) Theo giả thiết của bài toán :

\(\eqalign{  & \left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_\alpha }} } \right)} \right| = {{\left| {2A + B} \right|} \over {\sqrt {{A^2} + {B^2}} .\sqrt {4 + 1 + 5} }} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \cos {60^0} = {1 \over 2}  \cr  &  \Leftrightarrow 2\left| {2A + B} \right| = \sqrt {10} .\sqrt {{A^2} + {B^2}}   \cr  &  \Leftrightarrow 6{A^2} + 16AB - 6{B^2} = 0. \cr} \)

Lấy B = 1 ta có

\(6{A^2} + 16A - 6 = 0 \Rightarrow \left[ \matrix{  {A_1} = {1 \over 3} \hfill \cr  {A_2} =  - 3. \hfill \cr}  \right.\)

Vậy có hai mặt phẳng (P) :

\({1 \over 3}x + y = 0; - 3x + y = 0.\)

Viết phương trình mp(Q) đi qua A(3;0;0), C(0;0;1) và tạo với mặt phẳng (Oxy) góc \({60^0}.\)

Lời giải chi tiết:

Mặt phẳng (Q) đi qua A, C và tạo với mp(Oxy) góc 600 nên (Q) cắt Oy tại điểm B(0;b;0) khác gốc O\( \Rightarrow b \ne 0.\)

Khi đó phương trình của mặt phẳng (Q) là :

\({x \over 3} + {y \over b} + {z \over 1} = 1\) hay \(bx +3y+ 3bz - 3b = 0\)

\( \Rightarrow \overrightarrow {{n_Q}}  = (b;3;3b).\)

Mặt phẳng (Oxy) có vec tơ pháp tuyến là \(\overrightarrow k (0;0;1).\) Theo giả thiết, ta có

\(\eqalign{  & \left| {\cos \left( {\overrightarrow {{n_Q}} ,\overrightarrow k } \right)} \right| = \cos {60^0} \Leftrightarrow {{\left| {3b} \right|} \over {\sqrt {{b^2} + 9 + 9{b^2}} }} = {1 \over 2}  \cr  &  \Leftrightarrow \left| {6b} \right| = \sqrt {10{b^2} + 9}  \Leftrightarrow {b^2} = {9 \over {26}} \Leftrightarrow b =  \pm {3 \over {\sqrt {26} }}. \cr} \)

Vậy có hai mặt phẳng (Q) :

\(\eqalign{  & x - \sqrt {26} y + 3z - 3 = 0.  \cr  & x + \sqrt {26} y + 3z - 3 = 0. \cr} \)

Loigiaihay.com

Quảng cáo
close