Bài 4.39 trang 102 SGK Toán 11 tập 1 - Kết nối tri thức

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD; K là giao điểm của mặt phẳng (AMN) và đường thẳng SC. Tỉ số (frac{{SK}}{{SC}}) bằng: A. (frac{1}{2}) B. (frac{1}{3}) C. (frac{1}{4}) D. (frac{2}{3})

Quảng cáo

Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD; K là giao điểm của mặt phẳng (AMN) và đường thẳng SC. Tỉ số \(\frac{{SK}}{{SC}}\) bằng:

A. \(\frac{1}{2}\)                                

B. \(\frac{1}{3}\)                                

C. \(\frac{1}{4}\)                                

D. \(\frac{2}{3}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng định lý Menelaus để tính tỉ số.

Lời giải chi tiết

Gọi O là giao điểm ACBD, gọi P là trung điểm MN

Ta có MN là đường trung bình tam giác SBD

Suy ra S, P, O thẳng hàng và P là trung điểm của SO 

Do đó P thuộc SO hay P thuộc mp(SAC)

Trong mp(SAC), nối AP kéo dài cắt SC tại K

Suy ra K là giao điểm của SCmp(AMN)

Áp dụng định lí Menelaus cho tam giác SOC:

\(\frac{{KS}}{{KC}} \times \frac{{CA}}{{AO}} \times \frac{{OP}}{{PS}} = 1\) suy ra \(\frac{{KS}}{{KC}} \times \frac{2}{1} \times 1 = 1\) suy ra \(\frac{{KS}}{{KC}} = \frac{1}{2}\)

Vậy \(\frac{{SK}}{{SC}} = \frac{1}{3}\)

Đáp án: B.

  • Bài 4.40 trang 102 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình hộp ABCD.A’B’C’D’. Gọi M, M’ lần lượt là trung điểm của các cạnh BC, B’C’. Hình chiếu của (Delta B'DM) qua phép chiếu song song trên (A’B’C’D’) theo phương chiếu AA’ là A. (Delta B'A'M') B. (Delta C'D'M') C. (Delta DMM') D. (Delta B'D'M')

  • Bài 4.41 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau: a) (SAD) và (SBC) b) (SAB) và (SCD) c) (SAC) và (SBD)

  • Bài 4.42 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, AA’. a) Xác định giao điểm của mặt phẳng (MNP) với đường thẳng B‘C b) Gọi K là giao điểm của mặt phẳng (MNP) với đường thẳng B’C. Tính tỉ số (frac{{KB'}}{{KC}})

  • Bài 4.43 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trên cạnh SC và cạnh AB lần lượt lấy điểm M và N sao cho CM = 2SM và BN = 2AN. a) Xác định giao điểm K của mặt phẳng (ABM) với đường thẳng SD. Tính tỉ số (frac{{SK}}{{SD}}) b) Chứng minh rằng MN // (SAD)

  • Bài 4.44 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD. a) Chứng minh rằng GK // (ABCD) b) Mặt phẳng chứa đường thằng GK và song song với mặt phằng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F. Chứng minh rằng tứ giác MNEF là hình bình hành.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close