tuyensinh247

Bài 41 trang 44 SBT Hình học 10 Nâng cao

Giải bài tập Bài 41 trang 44 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Cho tam giác \(ABC\) nội tiếp trong đường tròn \((O ; R)\), có đường cao \(AA’\). Gọi \(E, F\) tương ứng là hình chiếu của \(A’\) trên \(AB, AC\) và \(J\) là giao điểm của \(EF\) với đường kính \(AD.\)

a) Chứng minh rằng \(AA’\) là tiếp tuyến của đường tròn \((A’JD).\)

b) Tìm điều kiện của \(AA’\) để ba điểm \(E, F, O\) thẳng hàng.

Lời giải chi tiết

(h.48).

 

a)  Trong hai tam giác vuông \(AA’B\) và \(AA’C\) ta có \(\overrightarrow {AE} .\overrightarrow {AB}  = AA{'^2}\) và \(\overrightarrow {AF} .\overrightarrow {AC}  = AA{'^2}\) nên \(\overrightarrow {AE} .\overrightarrow {AB}  = \overrightarrow {AF} .\overrightarrow {AC} \), suy ra tứ giác \(BEFC\) nội tiếp được, do đó ta có\(\widehat {AFE} = \widehat {ABC}\).

Mặt khác \(\widehat {ABC} = \widehat {ADC}\) ( góc nội tiếp cùng chắn cung \(AC\)) nên tứ giác \(DCFJ\) nội tiếp được, suy ra \(\overrightarrow {AJ} .\overrightarrow {AD}  = \overrightarrow {AF} .\overrightarrow {AC} \). Vậy \(\overrightarrow {AJ} .\overrightarrow {AD}  = AA{'^2}\) do đó \(AA’\) là tiếp tuyến của đường tròn \((A’JD).\)

b) Ba điểm \(E, F, O\) thẳng hàng khi \(O\) trùng với \(J\) hay \(AJ=R.\)

Do \(\overrightarrow {AJ} .\overrightarrow {AD}  = AA{'^2}\) nên \(AJ=R\) nếu \(AA’^2=2R^2\)  hay \(AA' = R\sqrt 2 \).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close