Bài 4 trang 58 SGK Đại số và Giải tích 11Tìm số hạng không chứa x trong khai triển Quảng cáo
Đề bài Tìm số hạng không chứa \(x\) trong khai triển của \(\displaystyle{\left( {{x^3} + {1 \over x}} \right)^8}\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng công thức số hạng tổng quát trong khai triển nhị thức Newton: \[{T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\] Sử dụng các công thức nhân, chia lũy thừa cùng cơ số: \({x^m}.{x^n} = {x^{m + n}};\,\,\dfrac{{{x^m}}}{{{x^n}}} = {x^{m - n}}\). Để tìm hệ số của số hạng không chứa \(x\) ta cho số mũ của x bằng 0, giải phương trình tìm \(k\) Lời giải chi tiết Số hạng tổng quát: \(\begin{array}{l}{T_{k + 1}} = C_8^k.{\left( {{x^3}} \right)^{8 - k}}.{\left( {\dfrac{1}{x}} \right)^k}\\ = C_8^k.{x^{24 - 3k}}.\dfrac{1}{{{x^k}}}\\ = C_8^k{x^{24 - 3k - k}}\\ = C_8^k{x^{24 - 4k}}\end{array}\) Số hạng không chứa \(x\) ứng với \(24 - 4k = 0 \Leftrightarrow 4k = 24 \Leftrightarrow k = 6\) Vậy số hạng không chứa \(x\) trong khai triển \({\left( {{x^3} + \dfrac{1}{x}} \right)^8}\) là \(C_8^6 = 28\). Loigiaihay.com
Quảng cáo
|