Bài 4 trang 33 SGK Hình học 11

Cho tam giác ABC vuông tại A, AH là đường cao kẻ từ A. Tìm một phép đồng dạng biến tam giác HBA thành tam giác ABC

Quảng cáo

Đề bài

Cho tam giác \(ABC\) vuông tại \(A, AH\) là đường cao kẻ từ \(A\). Tìm một phép đồng dạng biến tam giác \(HBA\) thành tam giác \(ABC\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Thực hiện liên tiếp hai phép biến hình:

- Phép đối xứng qua đường thẳng \(d,\) với \(d\) là phân giác của góc \(B.\)

- Phép vị tự tâm \(B,\) tỉ số \(AC/AH.\)

Lời giải chi tiết

Gọi \(d\) là đường phân giác của \( \widehat{B}\).

Gọi \(A' = {D_d}\left( H \right),C' = {D_d}\left( A \right)\).

Dễ thấy \(A'\in AB, C'\in BC\).

Ta có \({D_{d}}\) biến \(∆HBA\) thành \(∆A'BC'\).

Suy ra \(∆HBA\)=\(∆A'BC'\) nên góc \(A'=H=90^0\)

\(\Rightarrow C'A'//CA\)

Theo định lý Ta-let có \(\frac{{BA}}{{BA'}} = \frac{{BC}}{{BC'}} = \frac{{AC}}{{A'C'}} = \frac{{AC}}{{AH}}=k\)

\(\Rightarrow \overrightarrow {BA}=k\overrightarrow {BA'}\) \(\Rightarrow {V_{\left( {B;k} \right)}}\left( {A'} \right) = A\)

\(\overrightarrow {BC}=k\overrightarrow {BC'}\)\(\Rightarrow  {V_{\left( {B;k} \right)}}\left( {C'} \right) = C\) 

Mà \({V_{\left( {B;k} \right)}}\left( B \right) = B\) nên \({V_{\left( {B;k} \right)}}\left( {\Delta A'BC'} \right) = \Delta ABC\).

Do đó phép đồng dạng có được bằng cách thực hiện liên tiếp \({D_{d}}\) và \({V_{(B,k)}}\) sẽ biến \( \bigtriangleup\)\(HBA\) thành \( \bigtriangleup\)\(ABC\)

 Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close