Bài 3.11 trang 79 SGK Toán 11 tập 1 - Cùng khám pháXét tính liên tục của các hàm số sau đây tại điểm \({x_0} = 3\). Quảng cáo
Đề bài Xét tính liên tục của các hàm số sau đây tại điểm \({x_0} = 3\). a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 3{x^2}}}{{x - 3}}\,\,\,khi\,\,\,x \ne 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,9\,\,\,\,khi\,\,x = 3\end{array} \right.\) b) \(f\left( x \right) = \left\{ \begin{array}{l} - x + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 3\\{x^2} - 4x + 3\,\,\,khi\,\,x \ge 3\end{array} \right.\) Phương pháp giải - Xem chi tiết a, Hàm số liên tục tại \(x = {x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) Đây là giới hạn tại điểm dạng vô định \(\frac{0}{0}\) nên phải thực hiện khử mẫu Đây là hàm phân thức hữu tỉ nên ta thực hiện phân tích đa thức thành nhân tử để khử dạng vô định b, Hàm số liên tục tại \(x = {x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x \right) = f\left( {{x_0}} \right)\) Hàm số \(y = f\left( x \right)\) đều là hàm đa thức nên khi tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) ta chỉ cần thay \(x = {x_0}\) vào hàm số \(f\left( x \right)\) Lời giải chi tiết a, Tập xác định \(D = \mathbb{R}\) + Với \({x_0} = 3\) thì \(f\left( 3 \right) = 9\) + \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{{x^3} - 3{x^2}}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \left( {{x^2}} \right) = {3^2} = 9 = f\left( 3 \right)\) Do đó, hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 3\) b)Tập xác định \(D = \mathbb{R}\) + Với \({x_0} = 3 \Rightarrow f\left( 3 \right) = {3^3} - 4.3 + 3 = 0\) + \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x + 1} \right) = - 3 + 1 = - 2\) + \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \left( {{x^2} - 4x + 3} \right) = {3^2} - 4.3 + 3 = 0\) Suy ra, \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right)\) vì \(0 \ne - 2\) do đó hàm số \(y = f\left( x \right)\) không liên tục tại điểm \({x_0} = 3\)
Quảng cáo
|