Bài 3 trang 33 SGK Hình học 11

Trong mặt phẳng Oxy cho điểm I (1;1) và đường trong tâm I bán kính 2.

Quảng cáo

Đề bài

Trong mặt phẳng \(Oxy\) cho điểm \(I (1;1)\) và đường trong tâm \(I\) bán kính \(2\). Viết phương trình của đường tròn là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm \(O\), góc \( 45^{\circ}\) và phép vị tự tâm \(O\), tỉ số \( \sqrt{2}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Phép quay tâm \(O\), góc quay \(45^0\) biến đường tròn tâm \(I\) bán kính \(R\) thành đường tròn tâm \(I_1\) bán kính \(R\), với \(I_1 = {Q_{\left( {O;{{45}^0}} \right)}}\left( I \right)\).

Phép vị tự tâm \(O\), tỉ số \(\sqrt{2}\) biến đường tròn tâm \(I_1\), bán kính \(R\) thành đường tròn tâm \(I_2\); bán kính \(R_2\), với \(I_2 = {V_{\left( {O;\sqrt 2 } \right)}}\left( I_1 \right);\,\,R_2 = \sqrt 2 R\).

Quảng cáo
decumar

Lời giải chi tiết

+ Gọi \(({I_1};{\rm{ }}{R_1}) = {\rm{ }}{Q_{\left( {O;{\rm{ }}45} \right)}}\;\left( {I;{\rm{ }}R} \right)\) (Phép quay đường tròn tâm \(I,\) bán kính \(R\) qua tâm \(O\) một góc \(45^0).\)

\( \Rightarrow \left\{ \begin{array}{l}
{I_1} = {Q_{\left( {O;{\rm{ }}45} \right)}}\;\left( I \right)\\
{R_1} = R
\end{array} \right.\)

Xác định \(I_1\):

Ta có:

\(\begin{array}{l}
{I_1} = {Q_{\left( {O;{\rm{ }}45} \right)}}\;\left( I \right) \Rightarrow \left\{ \begin{array}{l}
O{I_1} = OI\\
\widehat {IO{I_1}} = {45^o}
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
O{I_1} = OI = \sqrt {{1^2} + {1^2}} = \sqrt 2 \\
\widehat {IO{I_1}} = {45^o} \Leftrightarrow {I_1} \in Oy
\end{array} \right.\\
\Rightarrow {I_1}\left( {0;\sqrt 2 } \right)
\end{array}\)

+ Gọi \(I_2\left( {x'';y''} \right) = {V_{\left( {O;\sqrt 2 } \right)}}\left( I_1 \right)\) ta có:

\(\overrightarrow {OI_2} = \sqrt 2\overrightarrow {OI_1} \)

\(\Leftrightarrow \left\{ \begin{array}{l}x'' = 2.0 = 0\\y'' = \sqrt 2.\sqrt 2 =2\end{array} \right.\)

\( \Rightarrow I''\left( {0;2 } \right)\)

Do đó phép vị tự tâm \(O\), tỉ số \(\sqrt{2}\) biến đường tròn tâm \(I_1\), bán kính R thành đường tròn tâm \(I_2\left( {0;2 } \right)\); bán kính \(R_2 = \sqrt 2 R = 2\sqrt 2 \).

Vậy phương trình đường tròn tâm \(I_2\), bán kính \(R_2\) là \({x^2} + {\left( {y - 2} \right)^2} = 8\).

Chú ý:

Cách khác để tìm \(I_1\) (chỉ dùng cho trắc nghiệm) như sau:

Gọi \(I_1(x';y') = {Q_{\left( {I;{{45}^0}} \right)}}\left( I \right)\) ta có:

\(\left\{ \begin{array}{l}x' = 1.\cos 45 - 1.\sin 45 = 0\\y' = 1.\sin 45 + 1.\cos 45 = \sqrt 2 \end{array} \right. \) \(\Rightarrow I_1\left( {0;\sqrt 2 } \right)\)

 Loigiaihay.com

Quảng cáo

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close