Bài 28 trang 79 SGK Toán 9 tập 2

Giải bài 28 trang 79 SGK Toán 9 tập 2. Cho hai đường tròn (O) và (O') cắt nhau tại A và B.

Quảng cáo

Đề bài

Cho hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(A\) và \(B\). Tiếp tuyến \(A\) của đường tròn \((O')\) cắt đường tròn \((O)\) tại điểm thứ hai \(P\). Tia \(PB\) cắt đường tròn \((O')\) tại \(Q\). Chứng minh đường thẳng \(AQ\) song song với tiếp tuyến tại \(P\) của đường tròn \((O).\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.

Lời giải chi tiết

                 

Nối \(AB\).

Xét đường tròn \((O')\) ta có: \(\widehat {AQB} = \widehat {PAB}\)   (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(AB\)).            (1)

Xét đường tròn \((O)\) ta có: \(\widehat {PAB} = \widehat {BPx}\)  (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(PB\)).                     (2)

Từ (1) và (2) có \(\widehat {AQB} = \widehat {BPx} \, (= \widehat {PAB}).\)

Mà hai góc này là hai góc so le trong \(\Rightarrow AQ // Px. \)

loigiaihay.com

Quảng cáo

Gửi bài