Bài 23 trang 107 SGK Toán 11 tập 2 - Kết nối tri thức

Cho cấp số nhân (left( {{u_n}} right)) biết rằng ba số ({u_1},{u_4}) và ({u_7})

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Cho cấp số nhân \(\left( {{u_n}} \right)\) biết rằng ba số \({u_1},{u_4}\) và \({u_7}\) lần lượt là các số hạng thứ nhất, thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0\). Hãy tìm công bội \(q\) của cấp số nhân đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Số hạng tổng quát của cấp số nhân \({u_n} = {u_1}{q^{n - 1}}\)

- Số hạng tổng quát của cấp số cộng \({u_n} = {u_1} + \left( {n - 1} \right)d\)

Lời giải chi tiết

Cấp số nhân \(\left( {{u_n}} \right)\) có \({u_4} = {u_1}.{q^3};{u_7} = {u_1}.{q^6}\)

Vì ba số \({u_1},{u_4}\) và \({u_7}\) lần lượt là các số hạng thứ nhất, thứ hai và thứ mười của một cấp số cộng có công sai d nên ta có

\(\left\{ \begin{array}{l}{u_4} = {u_1}{q^3} = {u_1} + d\\{u_7} = {u_1}{q^6} = {u_1} + 9d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{u_1}\left( {{q^3} - 1} \right) = d\\{u_1}\left( {{q^6} - 1} \right) = 9d\end{array} \right.\)

Do \(d \ne 0\) nên \(9 = \frac{{9d}}{d} = \frac{{{u_1}\left( {{q^6} - 1} \right)}}{{{u_1}\left( {{q^3} - 1} \right)}} = {q^3} + 1 \Leftrightarrow {q^3} = 8 \Leftrightarrow q = 2\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close