Bài 2 trang 45 SGK Toán 9 tập 1

Cho hàm số y =

Quảng cáo

Đề bài

Cho hàm số \(\displaystyle y =  - {1 \over 2}x + 3\)  

a) Tính các giá trị tương ứng của y theo các giá trị của x rồi điền vào bảng sau:

b) Hàm số đã cho là hàm số đồng biến hay nghịch biến ? Vì sao ?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Lần lượt thay từng giá trị của \(x\) vào công thức hàm số \(y=f(x)\) ta tính được giá trị \(y\) của hàm số tại điểm đó. 

b) Với \({x_1},{x_2} \in \mathbb{R}\):

Nếu \( x_1  < x_2\)  và   \(f(x_1) < f(x_2)\)  thì hàm số \(y=f(x)\) đồng biến trên \(\mathbb{R}\).

Nếu \( x_1  < x_2\)  và   \(f(x_1) > f(x_2)\)  thì hàm số \(y=f(x)\) nghịch biến trên \(\mathbb{R}\).

Lời giải chi tiết

a) Ta có \(y=f(x)=-\dfrac{1}{2}x+3\).

Với \(y =  - \dfrac{1}{2}x + 3\) thay các giá trị của \(x\) vào biểu thức của \(y\), ta được:

+) \(f\left( { - 2,5} \right) =  - \dfrac{1}{2}.\left( { - 2,5} \right) + 3 \)

\(=(-0,5).(-2,5)+3\)\(=1,25+3 = 4,25\)

+)  \(f\left( { - 2} \right) =  - \dfrac{1}{2}.\left( { - 2} \right) + 3 \)

 \(=(-0,5).(-2)+3=1+3 = 4\).

 +) \(f\left( { - 1,5} \right) = - \dfrac{1}{2}.\left( { - 1,5} \right) + 3 \)

\(= (-0,5).(-1,5)+3\)\(=0,75+3= 3,75\).

 +) \(f\left( { - 1} \right) = - \dfrac{1}{2}.\left( { - 1} \right) + 3 \)

\(= (-0,5).(-1)+3=0,5+3 = 3,5\).

+) \(f\left( { - 0,5} \right) =  - \dfrac{1}{2}.\left( { - 0,5} \right) + 3\)

\(= (-0,5).(-0,5)+3\)\(=0,25+3= 3,25\).

 +) \(f\left( 0 \right) =- \dfrac{1}{2}. 0 + 3\)\( = (-0,5).0+3=0+3= 3\)

 +) \(f\left( {0,5} \right) =  - \dfrac{1}{2}. 0,5 + 3\)

\(= (-0,5).0,5+3\)\(=-0,25+3= 2,75\)

 +) \(f\left( 1 \right) =  - \dfrac{1}{2}. 1 + 3 \)

\(= (-0,5).1+3=-0,5+3= 2,5\).

+) \(f\left( {1,5} \right) = - \dfrac{1}{2}.1,5 + 3 \)

\(=(-0,5).1,5+3=-0,75+3\)\( = 2,25\)

+)  \(f\left( 2 \right) =  - \dfrac{1}{2}. 2 + 3 \)

\(= (-0,5).2+3=-1+3= 2\).

 +) \(f\left( {2,5} \right) = - \dfrac{1}{2}.2,5 + 3 \)

\(= (-0,5).2,5+3=-1,25+3 \)\(= 1,75\)

Ta có bảng sau:

b)

Nhìn vào bảng giá trị của hàm số ở câu \(a\) ta thấy khi \(x\) càng tăng thì giá trị của \(f(x)\) càng giảm. Do đó hàm số nghịch biến trên \(\mathbb R\).

Loigiaihay.com

Quảng cáo
list
close
Gửi bài