Bài 15 trang 103 Tài liệu dạy – học Toán 9 tập 2

Giải bài tập Chứng minh

Quảng cáo

Đề bài

Chứng minh \(\widehat {OAB} = \widehat {OBA} = \widehat {OCD} = \widehat {ODC} = \widehat {ODE} = \widehat {ODE} = \widehat {OEA} = \widehat {OAE}\)

Từ đó chứng minh nếu một ngũ giác nội tiếp và có các cạnh bằng nhau thì nó có phải là ngũ giác đều.

Phương pháp giải - Xem chi tiết

Chứng minh ngũ giác ABCDE có tất cả các góc bằng nhau.

Lời giải chi tiết

 

Ta có : \(AB = BC = CD = DE = EA \)

\(\Rightarrow cung\,AB = cung\,BC = cung\,CD = cung\,DE = cung\,EA\) (các dây bằng nhau căng các cung bằng nhau).

\( \Rightarrow \widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOA}\) (số đo góc ở tâm bằng số đo cung bị chắn).

Xét \(\Delta OAB\) có \(OA = OB = R \Rightarrow \Delta OAB\) cân tại O.

\( \Rightarrow \widehat {OAB} = \widehat {OBA} = \dfrac{{{{180}^0} - \widehat {OAB}}}{2}\).

Chứng minh tương tự ta có

\(\begin{array}{l}\widehat {OBC} = \widehat {OCB} = \dfrac{{{{180}^0} - \widehat {BOC}}}{2}\\\widehat {OCD} = \widehat {ODC} = \dfrac{{{{180}^0} - \widehat {COD}}}{2}\\\widehat {ODE} = \widehat {ODE} = \dfrac{{{{180}^0} - \widehat {DOE}}}{2}\\\widehat {OEA} = \widehat {OAE} = \dfrac{{{{180}^0} - \widehat {EOA}}}{2}\end{array}\)

Mà \(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOA}\)

\(\begin{array}{l} \Rightarrow \widehat {OAB} = \widehat {OBA} = \widehat {OCD} = \widehat {ODC} = \widehat {ODE} = \widehat {ODE} = \widehat {OEA} = \widehat {OAE}\\ \Rightarrow \widehat {EAB} = \widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA}\end{array}\)

Vậy ngũ giác ABCDE là ngũ giác đều (Ngũ giác có tất cả các cạnh bằng nhau và các góc bằng nhau).

 Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close