Bài 14 trang 75 SGK Toán 8 tập 1

Đố. Trong các tứ giác ABCD và EFGH trên giấy kẻ ô vuông (h.31), tứ giác nào là hình thang cân? Vì sao?

Quảng cáo

Đề bài

Trong các tứ giác \(ABCD\) và \(EFGH\) trên giấy kẻ ô vuông (h.\(31\)), tứ giác nào là hình thang cân? Vì sao?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Để chứng minh một hình thang là hình thang cân, ta sử dụng một trong các cách sau:

   - Chứng minh hai góc kề một đáy bằng nhau 

   - Chứng minh hai đường chéo bằng nhau

+ Định lý Pytago: \(ΔABC\) vuông tại \(A\) ta có: \(AB^2 + AC^2 = BC^2.\)

Lời giải chi tiết

(Coi mỗi cạnh của 1 ô vuông nhỏ là 1cm) 

+ Xét tứ giác \(ABCD\)

Nhận thấy \(AB // CD\)

\(⇒\) Tứ giác \(ABCD\) là hình thang.

Lấy thêm điểm \(K\) như hình vẽ, ta có \(AK=4cm, CK=1cm\)

Xét \(ΔACK\) vuông tại \(K\), theo định lý Pytago ta có:

\(AC^2 = AK^2 + KC^2 = 4^2 + 1^2 = 17\)

Tương tự, từ hình vẽ ta có \(BD\) là cạnh huyền của tam giác vuông có độ dài 2 cạnh góc vuông là 4cm và 1cm.

Theo định lý Pytago ta có: \(BD^2 = 4^2 + 1^2 = 17\)

\(⇒ AC^2 = BD^2\)

\(⇒ AC = BD\)

Vậy hình thang \(ABCD\) có hai đường chéo \(AC = BD\) nên là hình thang cân.

+ Xét tứ giác \(EFGH\)

\(FG // EH ⇒\) Tứ giác \(EFGH\) là hình thang.

Lại có: \(EG = 4\,cm\) (hình vẽ)

Vì \(FH\) là cạnh huyền của tam giác vuông có độ dài 2 cạnh góc vuông là 2cm và 3cm (hình vẽ) nên theo định lý Pytago ta có:

\(FH^2 = 2^2 + 3^2 = 13 \)

\(⇒ FH =\sqrt {13} ≠ EG\)

Vậy hình thang \(EFGH\) có hai đường chéo không bằng nhau nên không phải hình thang cân.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close