Bài 1.4 trang 16 SGK Toán 11 tập 1 - Kết nối tri thức

Tính các giá trị lượng giác của góc (alpha ), biết:

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Tính các giá trị lượng giác của góc \(\alpha \), biết:

a) \(\cos \alpha  = \frac{1}{5}\) và \(0 < \alpha  < \frac{\pi }{2}\);             

b) \(\sin \alpha  = \frac{2}{3}\) và \(\frac{\pi }{2} < \alpha  < \pi \).

c) \(\tan \alpha  = \sqrt 5 \) và \(\pi  < a < \frac{{3\pi }}{2}\);         

d) \(\cot \alpha  =  - \frac{1}{{\sqrt 2 }}\) và \(\frac{{3\pi }}{2} < \alpha  < 2\pi \).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Từ hệ thức lượng giác cơ bản là mối liên hệ giữa hai giá trị lượng giác, khi biết một giá trị ta sẽ suy ra được giá trị còn lại. Cần lưu ý tới dấu của giá trị lượng giác.

- Sử dụng các hằng đẳng thức đáng nhớ trong đại số.

Lời giải chi tiết

a) Vì \(0<\alpha <\frac{\pi }{2} \) nên \(\sin \alpha  > 0\). Mặt khác, từ \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) suy ra

\(\sin \alpha  = \sqrt {1 - {{\cos }^2}a}  = \sqrt {1 - \frac{1}{{25}}}  = \frac{{2\sqrt 6 }}{5}\)

Do đó, \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{\frac{1}{5}}}{{\frac{{2\sqrt 6 }}{5}}} = \frac{{\sqrt 6 }}{{12}}\)

b) Vì \(\frac{\pi }{2} < \alpha  < \pi\) nên \(\cos \alpha  < 0\). Mặt khác, từ \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) suy ra

       \(\cos \alpha  = \sqrt {1 - {{\sin }^2}a}  = \sqrt {1 - \frac{4}{9}}  = -\frac{{\sqrt 5 }}{3}\)

Do đó, \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{-\frac{{\sqrt 5 }}{3}}} = -\frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{-\frac{{\sqrt 5 }}{3}}}{{\frac{2}{3}}} = -\frac{{\sqrt 5 }}{2}\)

c) Ta có: \(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }}\)

Ta có: \({\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow {\cos ^2}\alpha  = \frac{1}{{{{\tan }^2}\alpha  + 1}} = \frac{1}{6} \Rightarrow \cos \alpha  =  \pm \frac{1}{{\sqrt 6 }}\)

Vì \(\pi  < \alpha  < \frac{{3\pi }}{2} \Rightarrow \sin \alpha  < 0\;\) và \(\,\,\cos \alpha  < 0 \Rightarrow \cos \alpha  = -\frac{1}{{\sqrt 6 }}\)

Ta có: \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha  = \tan \alpha .\cos \alpha  = \sqrt 5 .(-\frac{1}{{\sqrt 6 }}) = -\sqrt {\frac{5}{6}} \)

d) Vì \(\cot \alpha  =  - \frac{1}{{\sqrt 2 }}\;\,\) nên \(\,\,\tan \alpha  = \frac{1}{{\cot \alpha }} =  - \sqrt 2 \)

Ta có: \({\cot ^2}\alpha  + 1 = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow {\sin ^2}\alpha  = \frac{1}{{{{\cot }^2}\alpha  + 1}} = \frac{2}{3} \Rightarrow \sin \alpha  =  \pm \sqrt {\frac{2}{3}} \)

Vì \(\frac{{3\pi }}{2} < \alpha  < 2\pi  \Rightarrow \sin \alpha  < 0 \Rightarrow \sin \alpha  =  - \sqrt {\frac{2}{3}} \)

Ta có: \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} \Rightarrow \cos \alpha  = \cot \alpha .\sin \alpha  = \left( { - \frac{1}{{\sqrt 2 }}} \right).\left( { - \sqrt {\frac{2}{3}} } \right) = \frac{{\sqrt 3 }}{3}\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close