Bài 103 trang 122 SBT Hình học 10 Nâng caoGiải bài tập Bài 103 trang 122 SBT Hình học 10 Nâng cao Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Cho đường tròn \((C): {x^2} + {y^2} - 8x - 6y + 21 = 0\) và điểm \(M(4 ; 5).\) LG a Chứng minh rằng điểm \(M\) nằm trên đường tròn \((C)\). Viết phương trình tiếp tuyến của \((C)\) tại \(M;\) Lời giải chi tiết: \((C)\) có tâm \(I(4 ; 3)\), bán kính \(R=2\). Dễ thấy tọa độ của M thỏa mãn phương trình của \((C)\) nên \(M\) nằm trên \((C)\). Ta cũng viết được phương trình của \((C)\) tại \(M\) là \(y-5=0.\) LG b Viết phương trình đường tròn đối xứng với \((C)\) qua đường thẳng \(y=x.\) Lời giải chi tiết: Đường tròn \((C’)\) đối xứng với \((C)\) qua đường thẳng \(\Delta : y = x\) khi \((C’)\) có bán kính bằng \(2\) và có tâm \(I’\) đối xứng với \(I\) qua \(\Delta \). Ta tìm được \(I’=(3 ; 4)\) và viết được phương trình của \((C’)\) là \({(x - 3)^2} + {(y - 4)^2} = 4\). Loigiaihay.com
Quảng cáo
|