Bài 1 trang 153 SGK Đại số 10Tính Quảng cáo
Video hướng dẫn giải Tính LG a \(\cos {225^0},\, \sin {240^0}, \, \cot( - {15^0}), \, \tan{75^0}\); Phương pháp giải: Áp dụng các công thức: \(\begin{array}{l} Lời giải chi tiết: \(\cos{225^0} = \cos({180^0} +{45^0})\) \(= - \cos{45^{0}}\) \(= -\dfrac{\sqrt{2}}{2}\) +) \(\sin{240^0} = \sin({180^0} +{60^0}) \) \(= - \sin{60^0}= -\dfrac{\sqrt{3}}{2}\) +) \(\cot( - {15^0})= - \cot{15^0} \) \( = - \cot \left( {{{90}^0} - {{75}^0}} \right)\) \(= - \tan{75^0} =- \tan({30^0} +{45^0})\) \( =\dfrac{-\tan30^{0}-\tan45^{0}}{1-\tan30^{0}\tan45^{0}}\) \(=\dfrac{-\dfrac{1}{\sqrt{3}}-1}{1-\dfrac{1}{\sqrt{3}}}\) \(=-\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\) \(=-\dfrac{(\sqrt{3}+1)^{2}}{2} \) \(= -2 - \sqrt 3\) +) \(\tan 75^0 = \tan \left( {{{90}^0} - {{15}^0}} \right)\) \(= \cot 15^0=-\cot (-15^0)\) \(=-(-2 - \sqrt 3)= 2 + \sqrt3\) LG b \(\sin \dfrac{7\pi}{12},\) \(\cos \left ( -\dfrac{\pi}{12} \right ),\) \(\tan\left ( \dfrac{13\pi}{12} \right )\) Lời giải chi tiết: \(\sin \dfrac{7\pi}{12} = \sin \left ( \dfrac{\pi}{3}+\dfrac{\pi}{4} \right ) \) \(=\sin\dfrac{\pi }{3}\cos\dfrac{\pi}{4}+ \cos \dfrac{\pi }{3}\sin\dfrac{\pi}{4}\) \( = \dfrac{{\sqrt 3 }}{2}.\dfrac{{\sqrt 2 }}{2} + \dfrac{1}{2}.\dfrac{{\sqrt 2 }}{2} \) \(= \dfrac{{\sqrt 6 }}{4} + \dfrac{{\sqrt 2 }}{4} = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\) +) \(\cos \left ( -\dfrac{\pi }{12} \right ) = \cos \left ( \dfrac{\pi }{4} -\dfrac{\pi }{3}\right ) \) \(= \cos \dfrac{\pi }{4}\cos\dfrac{\pi }{3} + \sin \dfrac{\pi }{3}\sin \dfrac{\pi }{4}\) \( =\dfrac{{\sqrt 2 }}{2} . \dfrac{1}{2}+ \dfrac{{\sqrt 3 }}{2}.\dfrac{{\sqrt 2 }}{2} \) \(= \dfrac{{\sqrt 2 }}{4} + \dfrac{{\sqrt 6 }}{4} = \dfrac{{\sqrt 2 + \sqrt 6 }}{4}\) +) \(\tan \left ( \dfrac{13\pi }{12} \right ) = \tan(π + \dfrac{\pi }{12}) \) \(= \tan \dfrac{\pi }{12} = \tan \left ( \dfrac{\pi }{3}-\dfrac{\pi}{4} \right )\) \(= \dfrac{\tan\dfrac{\pi }{3}-\tan\dfrac{\pi }{4}}{1+\tan\dfrac{\pi }{3}\tan\dfrac{\pi }{4}}\) \( = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 .1}} \) \(= \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \) \(= \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{3 - 1}} \) \(= \dfrac{{4 - 2\sqrt 3 }}{2} = 2 - \sqrt 3 \) Loigiaihay.com
Quảng cáo
|