Bài 1 trang 111 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho hình chóp (S.ABCD), đáy (ABCD) là hình bình hành có (O) là giao điểm hai đường chéo. Cho (M) là trung điểm của (SC).

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình bình hành có \(O\) là giao điểm hai đường chéo. Cho \(M\) là trung điểm của \(SC\).

a) Chứng minh đường thẳng \(OM\) song song với hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBA} \right)\);

b) Tìm giao tuyến của hai mặt phẳng \(\left( {OMD} \right)\) và \(\left( {SAD} \right)\).

Phương pháp giải - Xem chi tiết

– Để chứng minh đường thẳng song song với mặt phẳng, ta chứng minh đường thẳng đấy không nằm trong mặt phẳng và song song với một đường thẳng nằm trong mặt phẳng.

‒ Để tìm giao tuyến của hai mặt phẳng, ta có 2 cách:

+ Cách 1: Tìm 2 điểm chung phân biệt. Giao tuyến là đường thẳng đi qua hai điểm chung.

+ Cách 2: Tìm 1 điểm chung và 2 đường thẳng song song nằm trên mỗi mặt phẳng. Giao tuyến là đường thẳng đi qua điểm chung và song song với hai đường thẳng đó.

Lời giải chi tiết

a) \(M\) là trung điểm của \(SC\)

\(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)

\( \Rightarrow OM\) là đường trung bình của tam giác \(SAC\)

\(\left. \begin{array}{l} \Rightarrow OM\parallel SA\\SA \subset \left( {SA{\rm{D}}} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SA{\rm{D}}} \right)\)

Ta có:

\(\left. \begin{array}{l}OM\parallel SA\\SA \subset \left( {SBA} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SBA} \right)\)

b) Ta có:

\(\left. \begin{array}{l}D \in \left( {OM{\rm{D}}} \right) \cap \left( {SA{\rm{D}}} \right)\\OM \subset \left( {OM{\rm{D}}} \right)\\SA \subset \left( {SA{\rm{D}}} \right)\\OM\parallel SA\end{array} \right\}\)

\( \Rightarrow \) Giao tuyến của hai mặt phẳng \(\left( {OMD} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(d\) đi qua điểm \(D\), song song với \(OM\) và \(SA\).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close