Lập phương trình mặt phẳng đi qua ba điểm (Aleft( {5;0;0} right),Bleft( {0;7;0} right),Cleft( {0;0;9} right)).
Xem lời giảiCho ba điểm (Aleft( {3; - 4;2} right),Bleft( {1;2;3} right),Cleft( {0;1;5} right)). Lập phương trình mặt phẳng (left( P right)) đi qua điểm (A) và vuông góc với đường thẳng (BC).
Xem lời giảiLập phương trình mặt phẳng (left( P right)) đi qua điểm (Kleft( {4; - 3;7} right)) và song song với mặt phẳng (left( Q right):3x - 2y + 4z + 7 = 0).
Xem lời giảiLập phương trình mặt phẳng (left( P right)) đi qua điểm (Ileft( {1; - 2;4} right)) và vuông góc với hai mặt phẳng (left( Q right):x - y - 2 = 0,left( R right):y + z + 3 = 0).
Xem lời giảiCho điểm (Mleft( {{x_0};{y_0};{z_0}} right)). Tính khoảng cách từ (M) đến các mặt phẳng (x - a = 0,y - b = 0,)(z - c = 0).
Xem lời giảiCho hai mặt phẳng \(\left( {{P_1}} \right):x + 2y - 3z + 5 = 0\) và \(\left( {{P_2}} \right): - 4x - 8y + 12z + 3 = 0\). a) Chứng minh rằng \(\left( {{P_1}} \right)\parallel \left( {{P_2}} \right)\). b) Tính khoảng cách giữa hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).
Xem lời giảiCho hình chóp (S.ABC) thoả mãn (widehat {ASB} = widehat {BSC} = widehat {CSA} = {90^ circ }). Gọi (H) là hình chiếu vuông góc của (S) trên mặt phẳng (left( {ABC} right)). Chứng minh rằng (frac{1}{{S{H^2}}} = frac{1}{{S{A^2}}} + frac{1}{{S{B^2}}} + frac{1}{{S{C^2}}}).
Xem lời giảiCho bốn điểm (Aleft( {1;0;0} right),Bleft( {0;2;0} right),Cleft( {0;0;3} right)) và (Dleft( {1;2;3} right)). Chứng minh rằng (A,B,C,D) không đồng phẳng.
Xem lời giảiCho hình hộp chữ nhật (ABCD.A'B'C'D') có (AB = 2a,AD = 3a,AA' = 4aleft( {a > 0} right)). Gọi (M,N,P) lần lượt là các điểm thuộc các tia (AB,AD,AA') sao cho (AM = a,AN = 2a,AP = 3a). Tính khoảng cách từ điểm (C') đến mặt phẳng (left( {MNP} right)).
Xem lời giảiTrong không gian với hệ toạ độ (Oxyz), cho hình chóp (S.ABCD) có đáy là hình chữ nhật và các điểm (Aleft( {0;0;0} right),Bleft( {a;0;0} right),Dleft( {0;b;0} right),Sleft( {0;0;c} right)) với (a,b,c) là các số dương (Hình 3). a) Tìm toạ độ của điểm (C), trung điểm (M) của (BC), trọng tâm (G) của tam giác (SCD). b) Lập phương trình mặt phẳng (left( {SBD} right)). c) Tính khoảng cách từ điểm (G) đến mặt phẳng (left( {SBD} right)).
Xem lời giải